BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 16307389)

  • 21. Marked changes in iliac crest bone structure in postmenopausal osteoporotic patients without any signs of disturbed bone remodeling or balance.
    Steiniche T; Christiansen P; Vesterby A; Hasling C; Ullerup R; Mosekilde L; Melsen F
    Bone; 1994; 15(1):73-9. PubMed ID: 8024855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iliac trabecular bone formation predicts radial trabecular bone density changes in type 1 osteoporosis.
    Hesp R; Arlot ME; Edouard C; Bradbeer JN; Meunier PJ; Reeve J
    J Bone Miner Res; 1991 Sep; 6(9):929-35. PubMed ID: 1789140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Histomorphometry. Method for evaluating the bone mass].
    Meunier PJ; Chavassieux P
    Rev Rhum Mal Osteoartic; 1985 Dec; 52(12):669-73. PubMed ID: 4095470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of postmenopausal osteoporotic women with parathyroid hormone 1-84 for 18 months increases cancellous bone formation and improves cancellous architecture: a study of iliac crest biopsies using histomorphometry and micro computed tomography.
    Fox J; Miller MA; Recker RR; Bare SP; Smith SY; Moreau I
    J Musculoskelet Neuronal Interact; 2005; 5(4):356-7. PubMed ID: 16340137
    [No Abstract]   [Full Text] [Related]  

  • 26. Quantitative associations between osteocyte density and biomechanics, microcrack and microstructure in OVX rats vertebral trabeculae.
    Ma YL; Dai RC; Sheng ZF; Jin Y; Zhang YH; Fang LN; Fan HJ; Liao EY
    J Biomech; 2008; 41(6):1324-32. PubMed ID: 18342320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ratio of osteocytic incorporation to bone matrix formation in femoral neck cancellous bone: an enhanced osteoblast work rate in the vicinity of hip osteoarthritis.
    Jordan GR; Loveridge N; Power J; Clarke MT; Parker M; Reeve J
    Calcif Tissue Int; 2003 Mar; 72(3):190-6. PubMed ID: 12532281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative bone histomorphometry and circulating T lymphocyte subsets in postmenopausal osteoporosis.
    Imai Y; Tsunenari T; Fukase M; Fujita T
    J Bone Miner Res; 1990 Apr; 5(4):393-9. PubMed ID: 2343779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone tissue compositional differences in women with and without osteoporotic fracture.
    McCreadie BR; Morris MD; Chen TC; Sudhaker Rao D; Finney WF; Widjaja E; Goldstein SA
    Bone; 2006 Dec; 39(6):1190-5. PubMed ID: 16901772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone.
    Vashishth D; Gibson GJ; Fyhrie DP
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):157-62. PubMed ID: 15627986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure.
    Compston JE
    Bone; 2007 Jun; 40(6):1447-52. PubMed ID: 17045858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteocyte deficiency in hip fractures.
    Delgado-Calle J; Arozamena J; García-Renedo R; García-Ibarbia C; Pascual-Carra MA; González-Macías J; Riancho JA
    Calcif Tissue Int; 2011 Oct; 89(4):327-34. PubMed ID: 21874545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone histomorphometry in acromegaly patients with fragility vertebral fractures.
    Dalle Carbonare L; Micheletti V; Cosaro E; Valenti MT; Mottes M; Francia G; Davì MV
    Pituitary; 2018 Feb; 21(1):56-64. PubMed ID: 29214508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlations of serum prolidase activity between bone turnover markers and mineral density in postmenopausal osteoporosis.
    Verit FF; Geyikli I; Yazgan P; Celik A
    Arch Gynecol Obstet; 2006 Jun; 274(3):133-7. PubMed ID: 16532321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The microanatomy of trabecular bone in young normal and osteoporotic elderly males.
    Shahtaheri SM
    Aging Male; 2007 Jun; 10(2):71-5. PubMed ID: 17558971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trabecular bone microarchitecture is related to the number of risk factors and etiology in osteoporotic men.
    Legrand E; Audran M; Guggenbuhl P; Levasseur R; Chalès G; Baslé MF; Chappard D
    Microsc Res Tech; 2007 Nov; 70(11):952-9. PubMed ID: 17661392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and remodelling of the human parietal bone: an age and gender histomorphometric study.
    Torres-Lagares D; Tulasne JF; Pouget C; Llorens A; Saffar JL; Lesclous P
    J Craniomaxillofac Surg; 2010 Jul; 38(5):325-30. PubMed ID: 20116271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for the role of osteocytes in the initiation of targeted remodeling.
    Heino TJ; Kurata K; Higaki H; Väänänen HK
    Technol Health Care; 2009; 17(1):49-56. PubMed ID: 19478405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The microscopic morphology of fluoride-induced bone.
    Vigorita VJ; Suda MK
    Clin Orthop Relat Res; 1983; (177):274-82. PubMed ID: 6407795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.