BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16307583)

  • 1. Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm.
    Viemari JC; Maussion G; Bévengut M; Burnet H; Pequignot JM; Népote V; Pachnis V; Simonneau M; Hilaire G
    Eur J Neurosci; 2005 Nov; 22(10):2403-12. PubMed ID: 16307583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice.
    Viemari JC; Bévengut M; Burnet H; Coulon P; Pequignot JM; Tiveron MC; Hilaire G
    J Neurosci; 2004 Jan; 24(4):928-37. PubMed ID: 14749437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice.
    Dauger S; Guimiot F; Renolleau S; Levacher B; Boda B; Mas C; Nepote V; Simonneau M; Gaultier C; Gallego J
    Physiol Genomics; 2001 Dec; 7(2):149-57. PubMed ID: 11773601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents.
    Hilaire G; Viemari JC; Coulon P; Simonneau M; Bévengut M
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):187-97. PubMed ID: 15519555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS.
    Hilaire G
    Auton Neurosci; 2006 Jun; 126-127():320-31. PubMed ID: 16603418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of pontine noradrenergic A5 neurons requires brain-derived neurotrophic factor.
    Guo H; Hellard DT; Huang L; Katz DM
    Eur J Neurosci; 2005 Apr; 21(7):2019-23. PubMed ID: 15869495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental basis of the rostro-caudal organization of the brainstem respiratory rhythm generator.
    Champagnat J; Morin-Surun MP; Fortin G; Thoby-Brisson M
    Philos Trans R Soc Lond B Biol Sci; 2009 Sep; 364(1529):2469-76. PubMed ID: 19651648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output.
    Huang L; Guo H; Hellard DT; Katz DM
    Neuroscience; 2005; 130(1):95-105. PubMed ID: 15561428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice.
    Viemari JC; Roux JC; Tryba AK; Saywell V; Burnet H; Peña F; Zanella S; Bévengut M; Barthelemy-Requin M; Herzing LB; Moncla A; Mancini J; Ramirez JM; Villard L; Hilaire G
    J Neurosci; 2005 Dec; 25(50):11521-30. PubMed ID: 16354910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene.
    Funk GD; Johnson SM; Smith JC; Dong XW; Lai J; Feldman JL
    J Neurophysiol; 1997 Sep; 78(3):1414-20. PubMed ID: 9310432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central respiratory control of A5 and A6 pontine noradrenergic neurons.
    Guyenet PG; Koshiya N; Huangfu D; Verberne AJ; Riley TA
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1035-44. PubMed ID: 8322954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental plasticity of the carotid chemoafferent pathway in rats that are hypoxic during the prenatal period.
    Peyronnet J; Roux JC; Mamet J; Perrin D; Lachuer J; Pequignot JM; Dalmaz Y
    Eur J Neurosci; 2007 Nov; 26(10):2865-72. PubMed ID: 18001283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of brainstem respiratory neuronal networks.
    Denavit-Saubié M; Champagnat J; Fortin G
    Pediatr Pulmonol Suppl; 1997; 16():216-7. PubMed ID: 9443280
    [No Abstract]   [Full Text] [Related]  

  • 14. Generation of a novel functional neuronal circuit in Hoxa1 mutant mice.
    del Toro ED; Borday V; Davenne M; Neun R; Rijli FM; Champagnat J
    J Neurosci; 2001 Aug; 21(15):5637-42. PubMed ID: 11466434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice.
    Ramirez JM; Quellmalz UJ; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats.
    Paton JF; Ramirez JM; Richter DW
    Neurosci Lett; 1994 Mar; 170(1):167-70. PubMed ID: 8041498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms.
    Smith JC; Abdala AP; Koizumi H; Rybak IA; Paton JF
    J Neurophysiol; 2007 Dec; 98(6):3370-87. PubMed ID: 17913982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic comparison of the expression of norepinephrine transporter, tyrosine hydroxylase and neuropeptide Y mRNA in association with dopamine beta-hydroxylase neurons in the rabbit brainstem.
    Pau KY; Ma YJ; Yu JH; Yang SP; Airhart N; Spies HG
    Brain Res Mol Brain Res; 1997 Sep; 48(2):367-81. PubMed ID: 9332734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early ontogeny of rhythm generation and control of breathing.
    Borday V; Fortin G; Champagnat J
    Respir Physiol; 1997 Nov; 110(2-3):245-9. PubMed ID: 9407617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoamine oxidase A-deficiency and noradrenergic respiratory regulations in neonatal mice.
    Viemari JC; Hilaire G
    Neurosci Lett; 2003 Apr; 340(3):221-4. PubMed ID: 12672546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.