These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16307797)

  • 1. Development of a large titanium bone chamber to study in vivo bone ingrowth.
    Hannink G; Aspenberg P; Schreurs BW; Buma P
    Biomaterials; 2006 Mar; 27(9):1810-6. PubMed ID: 16307797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft tissue movement and stress shielding do not affect bone ingrowth in the bone conduction chamber.
    van der Donk S; Verdonschot N; Schreurs BW; Buma P
    Comp Med; 2002 Aug; 52(4):328-31. PubMed ID: 12211276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic fibroblast growth factor promotes bone ingrowth in porous hydroxyapatite.
    Wang JS; Aspenberg P
    Clin Orthop Relat Res; 1996 Dec; (333):252-60. PubMed ID: 8981904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity of bone ingrowth in rats and goats: a bone chamber study.
    van der Donk S; Buma P; Aspenberg P; Schreurs BW
    Comp Med; 2001 Aug; 51(4):336-40. PubMed ID: 11924792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation in the presence of phagocytosable hydroxyapatite particles.
    Wang JS; Goodman S; Aspenberg P
    Clin Orthop Relat Res; 1994 Jul; (304):272-9. PubMed ID: 8020228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No positive effects of OP-1 device on the incorporation of impacted graft materials after 8 weeks: a bone chamber study in goats.
    Hannink G; Schreurs BW; Buma P
    Acta Orthop; 2007 Aug; 78(4):551-8. PubMed ID: 17966011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats.
    Wang JS; Aspenberg P
    J Orthop Res; 1996 Mar; 14(2):316-23. PubMed ID: 8648512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles.
    Goodman SB; Song Y; Yoo JY; Fox N; Trindade MC; Kajiyama G; Ma T; Regula D; Brown J; Smith RL
    J Biomed Mater Res A; 2003 Jun; 65(4):454-61. PubMed ID: 12761835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent micromotion and polyethylene particles inhibit bone ingrowth into titanium chambers in rabbits.
    Goodman S; Aspenberg P; Song Y; Regula D; Lidgren L
    J Appl Biomater; 1995; 6(3):161-5. PubMed ID: 7492805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biocompatibility testing of various biomaterials as dependent on immune status].
    Endres S; Landgraff M; Kratz M; Wilke A
    Z Orthop Ihre Grenzgeb; 2004; 142(3):358-65. PubMed ID: 15250011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Histomorphometric evaluation of bone ingrowth of porous titanium by a computer-assisted analyzing system].
    Endres S; Wilke M; Frank H; Knöll P; Kratz M; Windler M; Wilke A
    Biomed Tech (Berl); 2005 Dec; 50(12):408-12. PubMed ID: 16429945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No effect of ketoprofen and meloxicam on bone graft ingrowth: a bone chamber study in goats.
    van der Heide HJ; Hannink G; Buma P; Schreurs BW
    Acta Orthop; 2008 Aug; 79(4):548-54. PubMed ID: 18766490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: a retrospective study of 13 clinical cases.
    Franch J; Díaz-Bertrana C; Lafuente P; Fontecha P; Durall I
    Vet Comp Orthop Traumatol; 2006; 19(4):196-204. PubMed ID: 17143391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in bone ingrowth after one versus two daily episodes of micromotion: experiments with titanium chambers in rabbits.
    Goodman S; Wang JS; Doshi A; Aspenberg P
    J Biomed Mater Res; 1993 Nov; 27(11):1419-24. PubMed ID: 8263004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of impaction and a bioceramic coating on bone ingrowth in porous titanium particles.
    Walschot LH; Schreurs BW; Verdonschot N; Buma P
    Acta Orthop; 2011 Jun; 82(3):372-7. PubMed ID: 21504310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaction of cancellous bone grafts impairs osteoconduction in titanium chambers.
    Tägil M; Aspenberg P
    Clin Orthop Relat Res; 1998 Jul; (352):231-8. PubMed ID: 9678052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histology and stability study of cortical bone graft influence on titanium implants.
    De Riu G; De Riu N; Spano G; Pizzigallo A; Petrone G; Tullio A
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Apr; 103(4):e1-7. PubMed ID: 17275363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.