These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16307854)

  • 21. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV; Sharma A; Brown T; Jiwani S; James AL
    Acta Otolaryngol; 2008 Apr; 128(4):404-7. PubMed ID: 18368574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards.
    Manley GA; Kirk DL; Köppl C; Yates GK
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2826-31. PubMed ID: 11226325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lizard auditory papillae: an evolutionary kaleidoscope.
    Manley GA
    Hear Res; 2011 Mar; 273(1-2):59-64. PubMed ID: 20435117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Otoacoustic emissions and effects of contralateral white noise stimulation on transient evoked otoacoustic emissions in diabetic children.
    Ugur AK; Kemaloglu YK; Ugur MB; Gunduz B; Saridogan C; Yesilkaya E; Bideci A; Cinaz P; Goksu N
    Int J Pediatr Otorhinolaryngol; 2009 Apr; 73(4):555-9. PubMed ID: 19150138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.
    Bergevin C; Manley GA; Köppl C
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3362-7. PubMed ID: 25737537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates.
    Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G
    J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear.
    Wit HP; Bell A
    Audiol Neurootol; 2023; 28(3):183-193. PubMed ID: 36626887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears.
    Kuroda T
    Auris Nasus Larynx; 2007 Mar; 34(1):29-38. PubMed ID: 17116381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous otoacoustic emission enhancement in children with reduced speech-in-noise intelligibility.
    Elgeti A; am Zehnhoff-Dinnesen AG; Matulat P; Schmidt CM; Knief A
    Audiol Neurootol; 2008; 13(6):357-64. PubMed ID: 18525199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range.
    Shatz LF
    Hear Res; 2004 Sep; 195(1-2):41-53. PubMed ID: 15350278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The study of maturation of the auditory analyzer rabbit according distortion-product otoacoustic emissions].
    D'iakonova IN; Ishanova IuS; Rakhmanova IV
    Vestn Ross Akad Med Nauk; 2013; (11):94-7. PubMed ID: 24640737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear.
    Vilfan A; Duke T
    Biophys J; 2008 Nov; 95(10):4622-30. PubMed ID: 18689448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility.
    Köppl C; Forge A; Manley GA
    J Comp Neurol; 2004 Nov; 479(2):149-55. PubMed ID: 15452826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation].
    Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y
    Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative studies of auditory hair cells and nerves in lizards.
    Miller MR
    J Comp Neurol; 1985 Feb; 232(1):1-24. PubMed ID: 3973079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation.
    Bian L; Watts KL
    J Acoust Soc Am; 2008 Feb; 123(2):887-98. PubMed ID: 18247892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans.
    Collet L; Veuillet E; Moulin A; Morlet T; Giraud AL; Micheyl C; Chéry-Croze S
    Br J Audiol; 1994; 28(4-5):213-8. PubMed ID: 7735149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pitch is influenced by spontaneous otoacoustic emissions.
    Köhler W; Fritze W
    Acta Otolaryngol; 1994 Jan; 114(1):110-2. PubMed ID: 8128847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.