BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 16308347)

  • 1. Interaction of KCNE subunits with the KCNQ1 K+ channel pore.
    Panaghie G; Tai KK; Abbott GW
    J Physiol; 2006 Feb; 570(Pt 3):455-67. PubMed ID: 16308347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes.
    Panaghie G; Abbott GW
    J Gen Physiol; 2007 Feb; 129(2):121-33. PubMed ID: 17227916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of slow activation gating in the cardiac I Ks channel complex.
    Strutz-Seebohm N; Pusch M; Wolf S; Stoll R; Tapken D; Gerwert K; Attali B; Seebohm G
    Cell Physiol Biochem; 2011; 27(5):443-52. PubMed ID: 21691061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism.
    Abbott GW; Goldstein SA
    FASEB J; 2002 Mar; 16(3):390-400. PubMed ID: 11874988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
    Choi SH; Shin TJ; Lee BH; Chu DH; Choe H; Pyo MK; Hwang SH; Kim BR; Lee SM; Lee JH; Kim DH; Kim HC; Rhim HW; Nah SY
    Eur J Pharmacol; 2010 Jul; 637(1-3):138-47. PubMed ID: 20399767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels.
    Seebohm G; Westenskow P; Lang F; Sanguinetti MC
    J Physiol; 2005 Mar; 563(Pt 2):359-68. PubMed ID: 15649981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel.
    Bett GC; Morales MJ; Beahm DL; Duffey ME; Rasmusson RL
    J Physiol; 2006 Nov; 576(Pt 3):755-67. PubMed ID: 16887873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor.
    Choi E; Abbott GW
    FASEB J; 2010 May; 24(5):1518-24. PubMed ID: 20040519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels.
    Osteen JD; Barro-Soria R; Robey S; Sampson KJ; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7103-8. PubMed ID: 22509038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KCNE3 acts by promoting voltage sensor activation in KCNQ1.
    Barro-Soria R; Perez ME; Larsson HP
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7286-92. PubMed ID: 26668384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure of a KCNE cytoplasmic domain.
    Rocheleau JM; Gage SD; Kobertz WR
    J Gen Physiol; 2006 Dec; 128(6):721-9. PubMed ID: 17130521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the interaction between KCNE2 and KCNQ1 in their transmembrane regions.
    Liu XS; Zhang M; Jiang M; Wu DM; Tseng GN
    J Membr Biol; 2007 Apr; 216(2-3):117-27. PubMed ID: 17676362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue.
    Nakajo K; Nishino A; Okamura Y; Kubo Y
    J Gen Physiol; 2011 Nov; 138(5):521-35. PubMed ID: 22042987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2.
    Wang Y; Zhang M; Xu Y; Jiang M; Zankov DP; Cui M; Tseng GN
    J Gen Physiol; 2012 Dec; 140(6):653-69. PubMed ID: 23183700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps.
    Barro-Soria R; Rebolledo S; Liin SI; Perez ME; Sampson KJ; Kass RS; Larsson HP
    Nat Commun; 2014 Apr; 5():3750. PubMed ID: 24769622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the S6 C-terminus in KCNQ1 channel gating.
    Boulet IR; Labro AJ; Raes AL; Snyders DJ
    J Physiol; 2007 Dec; 585(Pt 2):325-37. PubMed ID: 17932138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels.
    Restier L; Cheng L; Sanguinetti MC
    J Physiol; 2008 Sep; 586(17):4179-91. PubMed ID: 18599533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1-KCNE K+ channel complexes.
    Morin TJ; Kobertz WR
    ACS Chem Biol; 2007 Jul; 2(7):469-73. PubMed ID: 17602620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels.
    Gage SD; Kobertz WR
    J Gen Physiol; 2004 Dec; 124(6):759-71. PubMed ID: 15572349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.