These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16308464)

  • 21. Interaction between single molecules of Mac-1 and ICAM-1 in living cells: an atomic force microscopy study.
    Yang H; Yu J; Fu G; Shi X; Xiao L; Chen Y; Fang X; He C
    Exp Cell Res; 2007 Oct; 313(16):3497-504. PubMed ID: 17803991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuum modeling of forces in growing viscoelastic cytoskeletal networks.
    Kim JS; Sun SX
    J Theor Biol; 2009 Feb; 256(4):596-606. PubMed ID: 19041329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A master relation defines the nonlinear viscoelasticity of single fibroblasts.
    Fernández P; Pullarkat PA; Ott A
    Biophys J; 2006 May; 90(10):3796-805. PubMed ID: 16461394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation on the rheological properties of hepatocellular carcinoma cells and their relevance to cytoskeleton structure.
    Wu Z; Zhang G; Shao K; Long M; Wang H; Song G; Wang B; Cai S
    Zhonghua Gan Zang Bing Za Zhi; 2001 Feb; 9(1):25-7. PubMed ID: 11242130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dealing with mechanics: mechanisms of force transduction in cells.
    Janmey PA; Weitz DA
    Trends Biochem Sci; 2004 Jul; 29(7):364-70. PubMed ID: 15236744
    [No Abstract]   [Full Text] [Related]  

  • 29. Actin filaments play a primary role for structural integrity and viscoelastic response in cells.
    Ketene AN; Roberts PC; Shea AA; Schmelz EM; Agah M
    Integr Biol (Camb); 2012 May; 4(5):540-9. PubMed ID: 22446682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical Properties of Intermediate Filament Proteins.
    Charrier EE; Janmey PA
    Methods Enzymol; 2016; 568():35-57. PubMed ID: 26795466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological behavior of mammalian cells.
    Stamenović D
    Cell Mol Life Sci; 2008 Nov; 65(22):3592-605. PubMed ID: 18668200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model for cytoplasmic rheology consistent with magnetic twisting cytometry.
    Butler JP; Kelly SM
    Biorheology; 1998; 35(3):193-209. PubMed ID: 10474651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics.
    Kruse K; Joanny JF; Jülicher F; Prost J; Sekimoto K
    Eur Phys J E Soft Matter; 2005 Jan; 16(1):5-16. PubMed ID: 15688136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A computational tensegrity model predicts dynamic rheological behaviors in living cells.
    Sultan C; Stamenović D; Ingber DE
    Ann Biomed Eng; 2004 Apr; 32(4):520-30. PubMed ID: 15117025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distending stress of the cytoskeleton is a key determinant of cell rheological behavior.
    Rosenblatt N; Hu S; Chen J; Wang N; Stamenović D
    Biochem Biophys Res Commun; 2004 Aug; 321(3):617-22. PubMed ID: 15358151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring viscoelasticity of soft biological samples using atomic force microscopy.
    Efremov YM; Okajima T; Raman A
    Soft Matter; 2020 Jan; 16(1):64-81. PubMed ID: 31720656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring biological materials mechanics with atomic force microscopy - Determination of viscoelastic cell properties from stress relaxation experiments.
    Weber A; Benitez R; Toca-Herrera JL
    Microsc Res Tech; 2022 Oct; 85(10):3284-3295. PubMed ID: 35736395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates.
    Rianna C; Radmacher M
    Eur Biophys J; 2017 May; 46(4):309-324. PubMed ID: 27645213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.