BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16308673)

  • 1. Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France).
    Leloup J; Petit F; Boust D; Deloffre J; Bally G; Clarisse O; Quillet L
    Microb Ecol; 2005 Oct; 50(3):307-14. PubMed ID: 16308673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments.
    Leloup J; Quillet L; Oger C; Boust D; Petit F
    FEMS Microbiol Ecol; 2004 Feb; 47(2):207-14. PubMed ID: 19712335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France.
    Leloup J; Quillet L; Berthe T; Petit F
    FEMS Microbiol Ecol; 2006 Feb; 55(2):230-8. PubMed ID: 16420631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characterization of porewaters in an intertidal mudflat of the Seine estuary: relationship to erosion-deposition cycles.
    Bally G; Mesnage V; Deloffre J; Clarisse O; Lafite R; Dupont JP
    Mar Pollut Bull; 2004 Aug; 49(3):163-73. PubMed ID: 15245981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France).
    Ramond JB; Berthe T; Lafite R; Deloffre J; Ouddane B; Petit F
    Mar Pollut Bull; 2008 Jun; 56(6):1168-76. PubMed ID: 18381217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France).
    Cébron A; Garnier J
    Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faecal-indicator bacteria and sedimentary processes in estuarine mudflats (Seine, France).
    Berthe T; Touron A; Leloup J; Deloffre J; Petit F
    Mar Pollut Bull; 2008; 57(1-5):59-67. PubMed ID: 18036620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach.
    Ramond JB; Berthe T; Duran R; Petit F
    Res Microbiol; 2009; 160(1):10-8. PubMed ID: 19013517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands.
    Steger D; Wentrup C; Braunegger C; Deevong P; Hofer M; Richter A; Baranyi C; Pester M; Wagner M; Loy A
    Appl Environ Microbiol; 2011 Feb; 77(4):1231-42. PubMed ID: 21169452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic of virioplankton abundance and its environmental control in the Charente estuary (France).
    Auguet JC; Montanié H; Delmas D; Hartmann HJ; Huet V
    Microb Ecol; 2005 Oct; 50(3):337-49. PubMed ID: 16328658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China.
    Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F
    FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.
    Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB
    Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics.
    Pelikan C; Herbold CW; Hausmann B; Müller AL; Pester M; Loy A
    Environ Microbiol; 2016 Sep; 18(9):2994-3009. PubMed ID: 26625892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.
    Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K
    Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional marker genes for identification of sulfate-reducing prokaryotes.
    Wagner M; Loy A; Klein M; Lee N; Ramsing NB; Stahl DA; Friedrich MW
    Methods Enzymol; 2005; 397():469-89. PubMed ID: 16260310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments.
    Shao D; Kang Y; Wu S; Wong MH
    Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes.
    Scholten JC; Joye SB; Hollibaugh JT; Murrell JC
    Microb Ecol; 2005 Jul; 50(1):29-39. PubMed ID: 16132423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes.
    Klein M; Friedrich M; Roger AJ; Hugenholtz P; Fishbain S; Abicht H; Blackall LL; Stahl DA; Wagner M
    J Bacteriol; 2001 Oct; 183(20):6028-35. PubMed ID: 11567003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.
    Dillon JG; Fishbain S; Miller SR; Bebout BM; Habicht KS; Webb SM; Stahl DA
    Appl Environ Microbiol; 2007 Aug; 73(16):5218-26. PubMed ID: 17575000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.