BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16308795)

  • 1. Laboratory-scale chlorination to estimate the levels of halogenated DBPs in full-scale distribution systems.
    Rodriguez MJ; Sérodes J
    Environ Monit Assess; 2005 Nov; 110(1-3):323-40. PubMed ID: 16308795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada).
    Sérodes JB; Rodriguez MJ; Li H; Bouchard C
    Chemosphere; 2003 Apr; 51(4):253-63. PubMed ID: 12604077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and spatio-temporal variability of halogenated acetaldehydes in full-scale drinking water systems.
    Gao J; Proulx F; Rodriguez MJ
    Sci Total Environ; 2019 Nov; 693():133517. PubMed ID: 31362219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system].
    Liu J; Chen C; Zhang XJ
    Huan Jing Ke Xue; 2009 Sep; 30(9):2538-42. PubMed ID: 19927800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alum coagulation on speciation and distribution of trihalomethanes (THMs) and haloacetic acids (HAAs).
    Gang D; Clevenger TE; Banerji SK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):521-34. PubMed ID: 15756964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.
    Tardif R; Catto C; Haddad S; Simard S; Rodriguez M
    Environ Res; 2016 Jul; 148():411-420. PubMed ID: 27131795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].
    Deng Y; Wei J; E X; Wang W; et al
    Wei Sheng Yan Jiu; 2008 Mar; 37(2):207-10. PubMed ID: 18589610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.
    Hong H; Xiong Y; Ruan M; Liao F; Lin H; Liang Y
    Sci Total Environ; 2013 Feb; 444():196-204. PubMed ID: 23271145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality.
    Luben TJ; Olshan AF; Herring AH; Jeffay S; Strader L; Buus RM; Chan RL; Savitz DA; Singer PC; Weinberg HS; Perreault SD
    Environ Health Perspect; 2007 Aug; 115(8):1169-76. PubMed ID: 17687443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trihalomethanes in drinking water of greater Québec region (Canada): occurrence, variations and modelling.
    Rodriguez MJ; Vinette Y; Sérodes JB; Bouchard C
    Environ Monit Assess; 2003 Nov; 89(1):69-93. PubMed ID: 14609275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights for booster chlorination strategy based on DBPs control in a large-scale water supply system.
    Zhu S; Zheng H; Sun H; Liu J; Ma X; Li X; Li Q; Dietrich AM
    Sci Total Environ; 2022 Aug; 833():155001. PubMed ID: 35381256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haloacetic acids in drinking water in the United Kingdom.
    Malliarou E; Collins C; Graham N; Nieuwenhuijsen MJ
    Water Res; 2005 Jul; 39(12):2722-30. PubMed ID: 15967473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination.
    Dong F; Pang Z; Yu J; Deng J; Li X; Ma X; Dietrich AM; Deng Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127113. PubMed ID: 34523488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models for predicting carbonaceous disinfection by-products formation in drinking water treatment plants: a case study of South Korea.
    Shahi NK; Maeng M; Dockko S
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24594-24603. PubMed ID: 31243657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of regulated and non-regulated disinfection by-products in small drinking water systems.
    Guilherme S; Rodriguez MJ
    Chemosphere; 2014 Dec; 117():425-32. PubMed ID: 25194329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The occurrence of disinfection by-products in the drinking water of Athens, Greece.
    Golfinopoulos SK; Nikolaou AD; Lekkas TD
    Environ Sci Pollut Res Int; 2003; 10(6):368-72. PubMed ID: 14690026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study.
    Liao P; Zhang T; Fang L; Jiang R; Wu G
    Sci Total Environ; 2022 Dec; 851(Pt 1):158115. PubMed ID: 35985588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems.
    Guilherme S; Rodriguez MJ
    Sci Total Environ; 2015 Jun; 518-519():280-9. PubMed ID: 25770450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.