These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16308848)

  • 1. The formation of neutral CCCO2H and HCCCO2 molecules from anionic precursors in the gas phase: a joint experimental and theoretical study.
    Fitzgerald M; Bowie JH; Schröder D; Schwarz H
    Rapid Commun Mass Spectrom; 2005; 19(24):3705-12. PubMed ID: 16308848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral cumulene oxide CCCCO is accessible by one-electron oxidation of [CCCCO]-* in the gas phase.
    Fitzgerald M; McAnoy AM; Bowie JH; Schröder D; Schwarz H
    Org Biomol Chem; 2005 Mar; 3(5):901-10. PubMed ID: 15731877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential interstellar molecules. Formation of neutral C(6)CO from C(6)CO(-*) in the gas phase.
    Dua S; Blanksby SJ; Bowie JH
    Rapid Commun Mass Spectrom; 2000; 14(2):118-21. PubMed ID: 10623940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do the interstellar molecules CCCO and CCCS rearrange when energised?
    Tran KM; McAnoy AM; Bowie JH
    Org Biomol Chem; 2004 Apr; 2(7):999-1006. PubMed ID: 15034622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of transient neutrals in the gas phase from anionic precursors. Does energised CNCCO rearrange to NCCCO?
    McAnoy AM; Dua S; Bowie JH
    Org Biomol Chem; 2004 Jun; 2(12):1742-7. PubMed ID: 15188041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The one-electron oxidation of [HCCOCC]- to form neutral HCCOCC, and the subsequent rearrangement of HCCOCC to form HCCCCO. An experimental and computational study.
    Fitzgerald M; Bowie JH
    Rapid Commun Mass Spectrom; 2006; 20(4):577-82. PubMed ID: 16429478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-electron oxidation of [CCOCC]-* in the gas phase forms stable and decomposing forms of CCCCO.
    Fitzgerald M; Dua S; Bowie JH
    Org Biomol Chem; 2005 Jul; 3(14):2646-51. PubMed ID: 15999200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas phase generation of the neutrals H2CCCCO, HCCCCDO and CCCHCHO from anionic precursors. Rearrangements of HCCCCDO and CCCHCHO. A joint experimental and theoretical study.
    Fitzgerald M; Bowie JH; Dua S
    Org Biomol Chem; 2003 Sep; 1(17):3111-9. PubMed ID: 14518135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstellar molecule CCCN may be formed by charge-stripping of [CCCN]- in the gas phase, and when energized, undergoes loss of C with partial carbon scrambling.
    Maclean MJ; Fitzgerald M; Bowie JH
    J Phys Chem A; 2007 Dec; 111(50):12932-7. PubMed ID: 18001016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does energized NCCCCCN lose carbon in the gas phase? A joint experimental and theoretical study.
    Wang T; Dua S; Bowie JH
    J Phys Chem A; 2010 Jan; 114(2):949-55. PubMed ID: 20014806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of the stable radicals .CH2CN, CH3.CHCN and .CH2CH2CN from the anions -CH2CN, CH3-CHCN and -CH2CH2CN in the gas phase. A joint experimental and theoretical study.
    Andreazza HJ; Fitzgerald M; Bowie JH
    Org Biomol Chem; 2006 Jun; 4(12):2466-72. PubMed ID: 16763693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of neutrals from ionic precursors in the gas phase. The rearrangement of CCCCCHO to HCCCCCO.
    Fitzgerald M; Bowie JH; Dua S
    Org Biomol Chem; 2003 May; 1(10):1769-78. PubMed ID: 12926368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of RCCCO and CCC(O)R (R = Me, Ph) neutral radicals from ionic precursors in the gas phase: the rearrangement of CCC(O)Ph.
    Peppe S; McAnoy AM; Dua S; Bowie JH
    Rapid Commun Mass Spectrom; 2004; 18(10):1008-16. PubMed ID: 15150822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rearrangements of transient neutral molecules in the gas phase. Does the conversion of CCCHO to HCCCO involve oxygen or hydrogen migration?
    Tran KM; McAnoy AM; Bowie JH
    Eur J Mass Spectrom (Chichester); 2004; 10(4):441-8. PubMed ID: 15302968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave spectrum, structure, and quantum chemical studies of a compound of potential astrochemical and astrobiological interest: Z-3-amino-2-propenenitrile.
    Askeland E; Møllendal H; Uggerud E; Guillemin JC; Aviles Moreno JR; Demaison J; Huet TR
    J Phys Chem A; 2006 Nov; 110(46):12572-84. PubMed ID: 17107106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of cresols and of methylphenoxyl radicals.
    Richard LS; Bernardes CE; Diogo HP; Leal JP; da Piedade ME
    J Phys Chem A; 2007 Sep; 111(35):8741-8. PubMed ID: 17691757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ge3H(n)- anions (n = 0-5) and their neutral analogues: a theoretical investigation on the structure, stability, and thermochemistry.
    Antoniotti P; Borocci S; Grandinetti F
    J Phys Chem A; 2006 Aug; 110(30):9429-37. PubMed ID: 16869693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the isomerization behavior between alpha,beta-unsaturated acyl radicals and alpha-ketenyl radicals.
    Matsubara H; Ryu I; Schiesser CH
    J Org Chem; 2005 Apr; 70(9):3610-7. PubMed ID: 15844998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of hydroxybenzoic acids and of the corresponding carboxyphenoxyl radicals. Intramolecular hydrogen bonding in 2-hydroxybenzoic acid.
    Pinto SS; Diogo HP; Guedes RC; Costa Cabral BJ; Minas da Piedade ME; Martinho Simões JA
    J Phys Chem A; 2005 Oct; 109(42):9700-8. PubMed ID: 16866422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study of the cyclization processes of energized CCCSi and CCCP.
    Maclean MJ; Eichinger PC; Wang T; Fitzgerald M; Bowie JH
    J Phys Chem A; 2008 Dec; 112(49):12714-20. PubMed ID: 19007196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.