These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Scoring ligand similarity in structure-based virtual screening. Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177 [TBL] [Abstract][Full Text] [Related]
7. Compound set enrichment: a novel approach to analysis of primary HTS data. Varin T; Gubler H; Parker CN; Zhang JH; Raman P; Ertl P; Schuffenhauer A J Chem Inf Model; 2010 Dec; 50(12):2067-78. PubMed ID: 21073183 [TBL] [Abstract][Full Text] [Related]
8. Enhanced HTS hit selection via a local hit rate analysis. Posner BA; Xi H; Mills JE J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815 [TBL] [Abstract][Full Text] [Related]
9. On the prediction of statistical parameters in high-throughput screening using resampling techniques. Ilouga PE; Hesterkamp T J Biomol Screen; 2012 Jul; 17(6):705-12. PubMed ID: 22460175 [TBL] [Abstract][Full Text] [Related]
10. Alternative statistical parameter for high-throughput screening assay quality assessment. Sui Y; Wu Z J Biomol Screen; 2007 Mar; 12(2):229-34. PubMed ID: 17218666 [TBL] [Abstract][Full Text] [Related]
11. NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening. Böcker A; Schneider G; Teckentrup A J Chem Inf Model; 2006; 46(6):2220-9. PubMed ID: 17125166 [TBL] [Abstract][Full Text] [Related]
12. Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of performance. Chen B; Harrison RF; Pasupa K; Willett P; Wilton DJ; Wood DJ; Lewell XQ J Chem Inf Model; 2006; 46(2):478-86. PubMed ID: 16562975 [TBL] [Abstract][Full Text] [Related]
13. Virtual screening against Mycobacterium tuberculosis dihydrofolate reductase: suggested workflow for compound prioritization using structure interaction fingerprints. Kumar A; Siddiqi MI J Mol Graph Model; 2008 Nov; 27(4):476-88. PubMed ID: 18829358 [TBL] [Abstract][Full Text] [Related]
14. Introduction of an information-theoretic method to predict recovery rates of active compounds for Bayesian in silico screening: theory and screening trials. Vogt M; Bajorath J J Chem Inf Model; 2007; 47(2):337-41. PubMed ID: 17302401 [TBL] [Abstract][Full Text] [Related]
15. Determination and mapping of activity-specific descriptor value ranges for the identification of active compounds. Eckert H; Bajorath J J Med Chem; 2006 Apr; 49(7):2284-93. PubMed ID: 16570925 [TBL] [Abstract][Full Text] [Related]
16. Selection of in silico drug screening results by using universal active probes (UAPs). Fukunishi Y; Ohno K; Orita M; Nakamura H J Chem Inf Model; 2010 Jul; 50(7):1233-40. PubMed ID: 20578712 [TBL] [Abstract][Full Text] [Related]
17. Design and evaluation of a novel class-directed 2D fingerprint to search for structurally diverse active compounds. Eckert H; Bajorath J J Chem Inf Model; 2006; 46(6):2515-26. PubMed ID: 17125192 [TBL] [Abstract][Full Text] [Related]
18. Mapping algorithms for molecular similarity analysis and ligand-based virtual screening: design of DynaMAD and comparison with MAD and DMC. Eckert H; Vogt I; Bajorath J J Chem Inf Model; 2006; 46(4):1623-34. PubMed ID: 16859294 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644 [TBL] [Abstract][Full Text] [Related]
20. Exploration of cluster structure-activity relationship analysis in efficient high-throughput screening. Wang XS; Salloum GA; Chipman HA; Welch WJ; Young SS J Chem Inf Model; 2007; 47(3):1206-14. PubMed ID: 17480051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]