BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16309458)

  • 1. Recent insights into the mechanisms of Chlamydia entry.
    Dautry-Varsat A; Subtil A; Hackstadt T
    Cell Microbiol; 2005 Dec; 7(12):1714-22. PubMed ID: 16309458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of
    Wenbo L; Yewei Y; Hui Z; Zhongyu L
    Virulence; 2024 Dec; 15(1):2351234. PubMed ID: 38773735
    [No Abstract]   [Full Text] [Related]  

  • 3. Conserved type III secretion system exerts important roles in Chlamydia trachomatis.
    Dai W; Li Z
    Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and targeting of secreted proteins from Chlamydia trachomatis.
    Bauler LD; Hackstadt T
    J Bacteriol; 2014 Apr; 196(7):1325-34. PubMed ID: 24443531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis.
    Pais SV; Milho C; Almeida F; Mota LJ
    PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion.
    Challagundla N; Phadnis D; Gupta A; Agrawal-Rajput R
    J Membr Biol; 2023 Dec; 256(4-6):393-411. PubMed ID: 37938349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hypothetical Inclusion Membrane Protein CPSIT_0846 Regulates Mitochondrial-Mediated Host Cell Apoptosis
    Tang T; Wu H; Chen X; Chen L; Liu L; Li Z; Bai Q; Chen Y; Chen L
    Front Cell Infect Microbiol; 2021; 11():607422. PubMed ID: 33747977
    [No Abstract]   [Full Text] [Related]  

  • 8. Microbes, helminths, and rheumatic diseases.
    Castro Rocha FA; Duarte-Monteiro AM; Henrique da Mota LM; Matias Dinelly Pinto AC; Fonseca JE
    Best Pract Res Clin Rheumatol; 2020 Aug; 34(4):101528. PubMed ID: 32448639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Two Deubiquitinating Enzymes from
    Hausman JM; Kenny S; Iyer S; Babar A; Qiu J; Fu J; Luo ZQ; Das C
    Biochemistry; 2020 Apr; 59(16):1604-1617. PubMed ID: 32275137
    [No Abstract]   [Full Text] [Related]  

  • 10. Methyl sulfonamide substituents improve the pharmacokinetic properties of bicyclic 2-pyridone based
    Kulén M; Núñez-Otero C; Cairns AG; Silver J; Lindgren AEG; Wede E; Singh P; Vielfort K; Bahnan W; Good JAD; Svensson R; Bergström S; Gylfe Å; Almqvist F
    Medchemcomm; 2019 Nov; 10(11):1966-1987. PubMed ID: 32206238
    [No Abstract]   [Full Text] [Related]  

  • 11. Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity.
    Lee Y; Kim BS; Choi S; Lee EY; Park S; Hwang J; Kwon Y; Hyun J; Lee C; Kim JF; Eom SH; Kim MH
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18031-18040. PubMed ID: 31427506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis.
    Claywell JE; Matschke LM; Plunkett KN; Fisher DJ
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK.
    McKuen MJ; Mueller KE; Bae YS; Fields KA
    Infect Immun; 2017 Dec; 85(12):. PubMed ID: 28970272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydiacae: Polymorphic membrane proteins make the difference.
    Hänel F; Saluz HP
    Virulence; 2016; 7(1):3-4. PubMed ID: 26606544
    [No Abstract]   [Full Text] [Related]  

  • 15. Chlamydia Outer Protein (Cop) B from Chlamydia pneumoniae possesses characteristic features of a type III secretion (T3S) translocator protein.
    Bulir DC; Waltho DA; Stone CB; Liang S; Chiang CK; Mwawasi KA; Nelson JC; Zhang SW; Mihalco SP; Scinocca ZC; Mahony JB
    BMC Microbiol; 2015 Aug; 15():163. PubMed ID: 26272448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.
    Fisher DJ; Adams NE; Maurelli AT
    Microbiology (Reading); 2015 Aug; 161(8):1648-1658. PubMed ID: 25998263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.
    Kokes M; Dunn JD; Granek JA; Nguyen BD; Barker JR; Valdivia RH; Bastidas RJ
    Cell Host Microbe; 2015 May; 17(5):716-25. PubMed ID: 25920978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword.
    Redgrove KA; McLaughlin EA
    Front Immunol; 2014; 5():534. PubMed ID: 25386180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae.
    Nawrotek A; Guimarães BG; Velours C; Subtil A; Knossow M; Gigant B
    J Biol Chem; 2014 Sep; 289(36):25199-210. PubMed ID: 25056950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor.
    White KS; Nicoletti G; Borland R
    Open Med Chem J; 2014; 8():1-16. PubMed ID: 24976873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.