BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16309559)

  • 1. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes.
    Lee S; Kohane I; Kasif S
    BMC Genomics; 2005 Nov; 6():168. PubMed ID: 16309559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abundance, arrangement, and function of sequence motifs in the chicken promoters.
    Abe H; Gemmell NJ
    BMC Genomics; 2014 Oct; 15(1):900. PubMed ID: 25318583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Housekeeping genes tend to show reduced upstream sequence conservation.
    Farré D; Bellora N; Mularoni L; Messeguer X; Albà MM
    Genome Biol; 2007; 8(7):R140. PubMed ID: 17626644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative promoter region analysis powered by CORG.
    Dieterich C; Grossmann S; Tanzer A; Röpcke S; Arndt PF; Stadler PF; Vingron M
    BMC Genomics; 2005 Feb; 6():24. PubMed ID: 15723697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome.
    Mahony S; Corcoran DL; Feingold E; Benos PV
    Genome Biol; 2007; 8(5):R84. PubMed ID: 17506886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak correlation between sequence conservation in promoter regions and in protein-coding regions of human-mouse orthologous gene pairs.
    Chiba H; Yamashita R; Kinoshita K; Nakai K
    BMC Genomics; 2008 Apr; 9():152. PubMed ID: 18384671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction-based approaches to characterize bidirectional promoters in the mammalian genome.
    Yang MQ; Elnitski LL
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S2. PubMed ID: 18366609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying pattern-defined regulatory islands in mammalian genomes.
    Cheung TH; Barthel KK; Kwan YL; Liu X
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10116-21. PubMed ID: 17535887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and cross-species comparison of canine osteoarthritic gene regulatory cis-elements.
    Hannenhalli SS; Middleton RP; Levy S; Perroud B; Holzwarth JA; McDonald K; Hannah SS
    Osteoarthritis Cartilage; 2006 Aug; 14(8):830-8. PubMed ID: 16580849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites.
    Kamalakaran S; Radhakrishnan SK; Beck WT
    J Biol Chem; 2005 Jun; 280(22):21491-7. PubMed ID: 15790569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana.
    Walther D; Brunnemann R; Selbig J
    PLoS Genet; 2007 Feb; 3(2):e11. PubMed ID: 17291162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherent promoter bidirectionality facilitates maintenance of sequence integrity and transcription of parasitic DNA in mammalian genomes.
    Kalitsis P; Saffery R
    BMC Genomics; 2009 Oct; 10():498. PubMed ID: 19860919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Positional conservation of clusters of overlapping promoter-like sequences in enterobacterial genomes.
    Huerta AM; Collado-Vides J; Francino MP;
    Mol Biol Evol; 2006 May; 23(5):997-1010. PubMed ID: 16547149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.
    Dermitzakis ET; Kirkness E; Schwarz S; Birney E; Reymond A; Antonarakis SE
    Genome Res; 2004 May; 14(5):852-9. PubMed ID: 15078857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme restructuring of
    Ciren D; Zebell S; Lippman ZB
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast.
    Tanay A; Regev A; Shamir R
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7203-8. PubMed ID: 15883364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CompMoby: comparative MobyDick for detection of cis-regulatory motifs.
    Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H
    BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq.
    Li J; Li R; Wang Y; Hu X; Zhao Y; Li L; Feng C; Gu X; Liang F; Lamont SJ; Hu S; Zhou H; Li N
    BMC Genomics; 2015 Oct; 16():851. PubMed ID: 26497311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches to identify promoters and cis-regulatory elements in plant genomes.
    Rombauts S; Florquin K; Lescot M; Marchal K; Rouzé P; van de Peer Y
    Plant Physiol; 2003 Jul; 132(3):1162-76. PubMed ID: 12857799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.