BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

814 related articles for article (PubMed ID: 16309626)

  • 1. Cold, salinity and drought stresses: an overview.
    Mahajan S; Tuteja N
    Arch Biochem Biophys; 2005 Dec; 444(2):139-58. PubMed ID: 16309626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of high salinity tolerance in plants.
    Tuteja N
    Methods Enzymol; 2007; 428():419-38. PubMed ID: 17875432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance.
    Vashisht AA; Tuteja N
    J Photochem Photobiol B; 2006 Aug; 84(2):150-60. PubMed ID: 16624568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.
    Chinnusamy V; Schumaker K; Zhu JK
    J Exp Bot; 2004 Jan; 55(395):225-36. PubMed ID: 14673035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factors as tools to engineer enhanced drought stress tolerance in plants.
    Hussain SS; Kayani MA; Amjad M
    Biotechnol Prog; 2011; 27(2):297-306. PubMed ID: 21302367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress.
    Kwak KJ; Kim JY; Kim YO; Kang H
    Plant Cell Physiol; 2007 Feb; 48(2):221-31. PubMed ID: 17169924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.
    Nakashima K; Tran LS; Van Nguyen D; Fujita M; Maruyama K; Todaka D; Ito Y; Hayashi N; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Aug; 51(4):617-30. PubMed ID: 17587305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold stress and acclimation - what is important for metabolic adjustment?
    Janská A; Marsík P; Zelenková S; Ovesná J
    Plant Biol (Stuttg); 2010 May; 12(3):395-405. PubMed ID: 20522175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice.
    Xiang Y; Tang N; Du H; Ye H; Xiong L
    Plant Physiol; 2008 Dec; 148(4):1938-52. PubMed ID: 18931143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamines and abiotic stress: recent advances.
    Groppa MD; Benavides MP
    Amino Acids; 2008 Jan; 34(1):35-45. PubMed ID: 17356805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.
    Vinocur B; Altman A
    Curr Opin Biotechnol; 2005 Apr; 16(2):123-32. PubMed ID: 15831376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
    Miller G; Suzuki N; Ciftci-Yilmaz S; Mittler R
    Plant Cell Environ; 2010 Apr; 33(4):453-67. PubMed ID: 19712065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.
    Yamaguchi-Shinozaki K; Shinozaki K
    Annu Rev Plant Biol; 2006; 57():781-803. PubMed ID: 16669782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants.
    Cho SK; Kim JE; Park JA; Eom TJ; Kim WT
    FEBS Lett; 2006 May; 580(13):3136-44. PubMed ID: 16684525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant gene networks in osmotic stress response: from genes to regulatory networks.
    Tran LS; Nakashima K; Shinozaki K; Yamaguchi-Shinozaki K
    Methods Enzymol; 2007; 428():109-28. PubMed ID: 17875414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
    Kilian J; Whitehead D; Horak J; Wanke D; Weinl S; Batistic O; D'Angelo C; Bornberg-Bauer E; Kudla J; Harter K
    Plant J; 2007 Apr; 50(2):347-63. PubMed ID: 17376166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Identification and characterization of "rd22" dehydration responsive gene in grapevine (Vitis vinifera L.)].
    Hanana M; Deluc L; Fouquet R; Daldoul S; Léon C; Barrieu F; Ghorbel A; Mliki A; Hamdi S
    C R Biol; 2008 Aug; 331(8):569-78. PubMed ID: 18606386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transduction during cold, salt, and drought stresses in plants.
    Huang GT; Ma SL; Bai LP; Zhang L; Ma H; Jia P; Liu J; Zhong M; Guo ZF
    Mol Biol Rep; 2012 Feb; 39(2):969-87. PubMed ID: 21573796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.