These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

818 related articles for article (PubMed ID: 16309626)

  • 21. Chromatin regulation functions in plant abiotic stress responses.
    Kim JM; To TK; Nishioka T; Seki M
    Plant Cell Environ; 2010 Apr; 33(4):604-11. PubMed ID: 19930132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of salinity stress on plants and its tolerance strategies: a review.
    Parihar P; Singh S; Singh R; Singh VP; Prasad SM
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4056-75. PubMed ID: 25398215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought.
    Mantri NL; Ford R; Coram TE; Pang EC
    BMC Genomics; 2007 Sep; 8():303. PubMed ID: 17764573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.
    Verslues PE; Agarwal M; Katiyar-Agarwal S; Zhu J; Zhu JK
    Plant J; 2006 Feb; 45(4):523-39. PubMed ID: 16441347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response.
    Nakamichi N; Kusano M; Fukushima A; Kita M; Ito S; Yamashino T; Saito K; Sakakibara H; Mizuno T
    Plant Cell Physiol; 2009 Mar; 50(3):447-62. PubMed ID: 19131357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen signaling and abiotic stress.
    Miller G; Shulaev V; Mittler R
    Physiol Plant; 2008 Jul; 133(3):481-9. PubMed ID: 18346071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
    Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY
    Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging trends in the functional genomics of the abiotic stress response in crop plants.
    Vij S; Tyagi AK
    Plant Biotechnol J; 2007 May; 5(3):361-80. PubMed ID: 17430544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245.
    Huang J; Sun SJ; Xu DQ; Yang X; Bao YM; Wang ZF; Tang HJ; Zhang H
    Biochem Biophys Res Commun; 2009 Nov; 389(3):556-61. PubMed ID: 19751706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?
    Tausz M; Sircelj H; Grill D
    J Exp Bot; 2004 Aug; 55(404):1955-62. PubMed ID: 15234995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions.
    Kim JY; Park SJ; Jang B; Jung CH; Ahn SJ; Goh CH; Cho K; Han O; Kang H
    Plant J; 2007 May; 50(3):439-51. PubMed ID: 17376161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding regulatory networks and engineering for enhanced drought tolerance in plants.
    Valliyodan B; Nguyen HT
    Curr Opin Plant Biol; 2006 Apr; 9(2):189-95. PubMed ID: 16483835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F; Maeta E; Terashima A; Takumi S
    Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice.
    Oh SJ; Kwon CW; Choi DW; Song SI; Kim JK
    Plant Biotechnol J; 2007 Sep; 5(5):646-56. PubMed ID: 17614953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding molecular mechanism of higher plant plasticity under abiotic stress.
    Shao HB; Guo QJ; Chu LY; Zhao XN; Su ZL; Hu YC; Cheng JF
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):37-45. PubMed ID: 16914294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.
    Qin F; Kakimoto M; Sakuma Y; Maruyama K; Osakabe Y; Tran LS; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Apr; 50(1):54-69. PubMed ID: 17346263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global switches and fine-tuning-ABA modulates plant pathogen defense.
    Asselbergh B; De Vleesschauwer D; Höfte M
    Mol Plant Microbe Interact; 2008 Jun; 21(6):709-19. PubMed ID: 18624635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane transport, sensing and signaling in plant adaptation to environmental stress.
    Conde A; Chaves MM; Gerós H
    Plant Cell Physiol; 2011 Sep; 52(9):1583-602. PubMed ID: 21828102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
    Seki M; Narusaka M; Ishida J; Nanjo T; Fujita M; Oono Y; Kamiya A; Nakajima M; Enju A; Sakurai T; Satou M; Akiyama K; Taji T; Yamaguchi-Shinozaki K; Carninci P; Kawai J; Hayashizaki Y; Shinozaki K
    Plant J; 2002 Aug; 31(3):279-92. PubMed ID: 12164808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.