BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 16309635)

  • 1. Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain.
    Bakshi A; Keck CA; Koshkin VS; LeBold DG; Siman R; Snyder EY; McIntosh TK
    Brain Res; 2005 Dec; 1065(1-2):8-19. PubMed ID: 16309635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent.
    Moore JD; Rothwell NJ; Gibson RM
    Br J Pharmacol; 2002 Feb; 135(4):1069-77. PubMed ID: 11861336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis.
    Liu MC; Akle V; Zheng W; Dave JR; Tortella FC; Hayes RL; Wang KK
    Biochem J; 2006 Mar; 394(Pt 3):715-25. PubMed ID: 16351572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual vulnerability of TDP-43 to calpain and caspase-3 proteolysis after neurotoxic conditions and traumatic brain injury.
    Yang Z; Lin F; Robertson CS; Wang KK
    J Cereb Blood Flow Metab; 2014 Sep; 34(9):1444-52. PubMed ID: 24917042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury.
    Zhang X; Chen Y; Jenkins LW; Kochanek PM; Clark RS
    Crit Care; 2005 Feb; 9(1):66-75. PubMed ID: 15693986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the Extracellular Matrix in Traumatic Brain Injury Increases Signal Generation from an Activity-Based Nanosensor.
    Kandell RM; Kudryashev JA; Kwon EJ
    ACS Nano; 2021 Dec; 15(12):20504-20516. PubMed ID: 34870408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain.
    Azevedo-Pereira RL; Manley NC; Dong C; Zhang Y; Lee AG; Zatulovskaia Y; Gupta V; Vu J; Han S; Berry JE; Bliss TM; Steinberg GK
    Cell Rep; 2023 Apr; 42(4):112353. PubMed ID: 37043353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Activity-Based Nanosensor for Traumatic Brain Injury.
    Kudryashev JA; Waggoner LE; Leng HT; Mininni NH; Kwon EJ
    ACS Sens; 2020 Mar; 5(3):686-692. PubMed ID: 32100994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of regional identity for neural stem and progenitor cell transplantation in the injured or diseased nervous system.
    Amar Kumar P; Dulin JN
    Neural Regen Res; 2024 Apr; 19(4):715-716. PubMed ID: 37843199
    [No Abstract]   [Full Text] [Related]  

  • 10. Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain.
    Azevedo-Pereira RL; Manley NC; Dong C; Zhang Y; Lee AG; Zatulovskaia Y; Gupta V; Vu J; Han S; Berry JE; Bliss TM; Steinberg GK
    Cell Rep; 2023 Aug; 42(8):113002. PubMed ID: 37561627
    [No Abstract]   [Full Text] [Related]  

  • 11. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy.
    Wang S; He Q; Qu Y; Yin W; Zhao R; Wang X; Yang Y; Guo ZN
    Neural Regen Res; 2024 Nov; 19(11):2430-2443. PubMed ID: 38526280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traumatic Brain Injury Preserves Firing Rates But Disrupts Laminar Oscillatory Coupling and Neuronal Entrainment in Hippocampal CA1.
    Koch PF; Cottone C; Adam CD; Ulyanova AV; Russo RJ; Weber MT; Arena JD; Johnson VE; Wolf JA
    eNeuro; 2020; 7(5):. PubMed ID: 32737188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembling Peptide Nanofiber Scaffolds for 3-D Reprogramming and Transplantation of Human Pluripotent Stem Cell-Derived Neurons.
    Francis NL; Bennett NK; Halikere A; Pang ZP; Moghe PV
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1030-1038. PubMed ID: 32582837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord.
    David BT; Curtin JJ; Goldberg DC; Scorpio K; Kandaswamy V; Hill CE
    eNeuro; 2020; 7(3):. PubMed ID: 31488552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality.
    González-Nieto D; Fernández-García L; Pérez-Rigueiro J; Guinea GV; Panetsos F
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subacute Transplantation of Native and Genetically Engineered Neural Progenitors Seeded on Microsphere Scaffolds Promote Repair and Functional Recovery After Traumatic Brain Injury.
    Skop NB; Singh S; Antikainen H; Saqcena C; Calderon F; Rothbard DE; Cho CH; Gandhi CD; Levison SW; Dobrowolski R
    ASN Neuro; 2019; 11():1759091419830186. PubMed ID: 30818968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells for Motor Neuron Disease Therapy.
    Abati E; Bresolin N; Comi GP; Corti S
    Mol Neurobiol; 2019 May; 56(5):3356-3367. PubMed ID: 30120734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human neural stem cells dispersed in artificial ECM form cerebral organoids when grafted in vivo.
    Basuodan R; Basu AP; Clowry GJ
    J Anat; 2018 Aug; 233(2):155-166. PubMed ID: 29745426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory role of calpain in neuronal death.
    Cheng SY; Wang SC; Lei M; Wang Z; Xiong K
    Neural Regen Res; 2018 Mar; 13(3):556-562. PubMed ID: 29623944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Hyaluronic Acid Hydrogel-Based Models for In Vitro Human iPSC-Derived NPC Culture and Differentiation.
    Wu S; Xu R; Duan B; Jiang P
    J Mater Chem B; 2017 Jun; 5(21):3870-3878. PubMed ID: 28775848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.