These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16309698)

  • 1. Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit.
    Sims PA; Menefee AL; Larsen TM; Mansoorabadi SO; Reed GH
    J Mol Biol; 2006 Jan; 355(3):422-31. PubMed ID: 16309698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution.
    Zhang E; Brewer JM; Minor W; Carreira LA; Lebioda L
    Biochemistry; 1997 Oct; 36(41):12526-34. PubMed ID: 9376357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants.
    Poyner RR; Laughlin LT; Sowa GA; Reed GH
    Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse protonation is the key to general acid-base catalysis in enolase.
    Sims PA; Larsen TM; Poyner RR; Cleland WW; Reed GH
    Biochemistry; 2003 Jul; 42(27):8298-306. PubMed ID: 12846578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution.
    Zhang E; Hatada M; Brewer JM; Lebioda L
    Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride inhibition of enolase: crystal structure and thermodynamics.
    Qin J; Chai G; Brewer JM; Lovelace LL; Lebioda L
    Biochemistry; 2006 Jan; 45(3):793-800. PubMed ID: 16411755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structure and catalytic mechanism of lobster enolase.
    Duquerroy S; Camus C; Janin J
    Biochemistry; 1995 Oct; 34(39):12513-23. PubMed ID: 7547999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of asymmetric complexes of human neuron specific enolase with resolved substrate and product and an analogous complex with two inhibitors indicate subunit interaction and inhibitor cooperativity.
    Qin J; Chai G; Brewer JM; Lovelace LL; Lebioda L
    J Inorg Biochem; 2012 Jun; 111():187-94. PubMed ID: 22437160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the enolase magnesium II binding site: implications for its evolution.
    Schreier B; Höcker B
    Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of His159 in yeast enolase catalysis.
    Vinarov DA; Nowak T
    Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression, purification and the 1.8 angstroms resolution crystal structure of human neuron specific enolase.
    Chai G; Brewer JM; Lovelace LL; Aoki T; Minor W; Lebioda L
    J Mol Biol; 2004 Aug; 341(4):1015-21. PubMed ID: 15289101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Enterococcus hirae enolase at 2.8 A resolution.
    Hosaka T; Meguro T; Yamato I; Shirakihara Y
    J Biochem; 2003 Jun; 133(6):817-23. PubMed ID: 12869539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Octameric structure of Staphylococcus aureus enolase in complex with phosphoenolpyruvate.
    Wu Y; Wang C; Lin S; Wu M; Han L; Tian C; Zhang X; Zang J
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2457-70. PubMed ID: 26627653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the quaternary structure of enolases, based on structural and evolutionary analysis of the octameric enolase from Bacillus subtilis.
    Brown CK; Kuhlman PL; Mattingly S; Slates K; Calie PJ; Farrar WW
    J Protein Chem; 1998 Nov; 17(8):855-66. PubMed ID: 9988532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure analysis of Entamoeba histolytica enolase.
    Schulz EC; Tietzel M; Tovy A; Ankri S; Ficner R
    Acta Crystallogr D Biol Crystallogr; 2011 Jul; 67(Pt 7):619-27. PubMed ID: 21697600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the Escherichia coli RNA degradosome component enolase.
    Kühnel K; Luisi BF
    J Mol Biol; 2001 Oct; 313(3):583-92. PubMed ID: 11676541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the apo decarbamylated form of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase from Bacillus subtilis.
    Tamura H; Saito Y; Ashida H; Kai Y; Inoue T; Yokota A; Matsumura H
    Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):942-51. PubMed ID: 19690372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, crystallization and preliminary crystallographic study of the putative enolase MJ0232 from the hyperthermophilic archaeon Methanococcus jannaschii.
    Yamamoto H; Kunishima N
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Nov; 64(Pt 11):1087-90. PubMed ID: 18997349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.