These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 163099)

  • 21. Studies of mitochondrial calcium movements using chlorotetracycline.
    Luthra R; Olson MS
    Biochim Biophys Acta; 1976 Sep; 440(3):744-58. PubMed ID: 822874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of electron paramagnetic resonance in studies of free and bound divalent cation: the measurement of membrane potentials in mitochondria.
    Gunter TE; Puskin JS
    Ann N Y Acad Sci; 1975 Dec; 264():112-23. PubMed ID: 4001
    [No Abstract]   [Full Text] [Related]  

  • 23. Quantitative magnetic resonance studies of manganese uptake by mitochondria.
    Gunter RE; Puskin JS; Russell PR
    Biophys J; 1975 Apr; 15(4):319-33. PubMed ID: 236048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese.
    Wolff NA; Garrick MD; Zhao L; Garrick LM; Ghio AJ; Thévenod F
    Sci Rep; 2018 Jan; 8(1):211. PubMed ID: 29317744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A survey of the interaction of calcium ions with mitochondria from different tissues and species.
    Carafoli E; Lehninger AL
    Biochem J; 1971 May; 122(5):681-90. PubMed ID: 5129264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface potential in rat liver mitochondria: terbium ion as a phosphorescent probe for surface potential.
    Hashimoto K; Rottenberg H
    Biochemistry; 1983 Dec; 22(25):5738-45. PubMed ID: 6661411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine.
    Kovacević Z
    Biochim Biophys Acta; 1976 Jun; 430(3):399-412. PubMed ID: 938640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A kinetic study of mitochondrial calcium transport.
    Reed KC; Bygrave FL
    Eur J Biochem; 1975 Jul; 55(3):497-504. PubMed ID: 240699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved structural domains among species and tissues-specific differences in the mitochondrial phosphate-transport protein and the ADP/ATP carrier.
    Rasmussen UB; Wohlrab H
    Biochim Biophys Acta; 1986 Dec; 852(2-3):306-14. PubMed ID: 3022808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intramitochondrial positions of cytochrome haem groups determined by dipolar interactions with paramagnetic cations.
    Case GD; Leigh JS
    Biochem J; 1976 Dec; 160(3):769-83. PubMed ID: 189758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The utilization of iron and its complexes by mammalian mitochondria.
    Barnes R; Connelly JL; Jones OT
    Biochem J; 1972 Aug; 128(5):1043-55. PubMed ID: 4345350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of proteins into mitochondria: a high conservation of precursor uptake and processing system.
    Takiguchi M; Miura S; Mori M; Tatibana M
    Comp Biochem Physiol B; 1983; 75(2):227-31. PubMed ID: 6347507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium carrier and the "high affinity calcium binding site" in mitochondria.
    Mela L; Chance B
    Biochem Biophys Res Commun; 1969 May; 35(4):556-9. PubMed ID: 5788509
    [No Abstract]   [Full Text] [Related]  

  • 34. Mitochondrial uptake of calcium ions and the regulation of cell function.
    Carafoli E
    Biochem Soc Symp; 1974; (39):89-109. PubMed ID: 4143472
    [No Abstract]   [Full Text] [Related]  

  • 35. Kinetic identification of a mitochondrial zinc uptake transport process in prostate cells.
    Guan Z; Kukoyi B; Feng P; Kennedy MC; Franklin RB; Costello LC
    J Inorg Biochem; 2003 Oct; 97(2):199-206. PubMed ID: 14512198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study.
    Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL
    Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divalent cation binding to reduced and octanoyl acyl-carrier protein.
    Tener DM; Mayo KH
    Eur J Biochem; 1990 May; 189(3):559-65. PubMed ID: 2161758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogenesis of mitochondria. A requirement for mitochondrial protein synthesis for the formation of a normal adenine nucleotide transporter in yeast mitochondria.
    Haslam JM; Perkins M; Linnane AW
    Biochem J; 1973 Aug; 134(4):935-47. PubMed ID: 4587073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membranous effects on adenosine triphosphatase activities of mitochondria from rat liver and Morris hepatoma 3924A.
    Melnick RL; Hanson RM; Morris HP
    Cancer Res; 1977 Dec; 37(12):4395-9. PubMed ID: 200347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.