These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 163099)
41. Water proton relaxation rate enhancements and association constants for Mn(II) to serum proteins determined by NMR T1 measurements. Budak H Z Naturforsch C J Biosci; 2005; 60(9-10):807-12. PubMed ID: 16320627 [TBL] [Abstract][Full Text] [Related]
42. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Brierley GP Mol Cell Biochem; 1976 Jan; 10(1):41-63. PubMed ID: 2858 [TBL] [Abstract][Full Text] [Related]
43. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria. Johnson RN; Hansford RG Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584 [TBL] [Abstract][Full Text] [Related]
44. Iron-blocking the high-affinity Mn-binding site in photosystem II facilitates identification of the type of hydrogen bond participating in proton-coupled electron transport via YZ. Semin BK; Lovyagina ER; Timofeev KN; Ivanov II; Rubin AB; Seibert M Biochemistry; 2005 Jul; 44(28):9746-57. PubMed ID: 16008359 [TBL] [Abstract][Full Text] [Related]
45. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. Guidot DM; Repine JE; Kitlowski AD; Flores SC; Nelson SK; Wright RM; McCord JM J Clin Invest; 1995 Aug; 96(2):1131-6. PubMed ID: 7635949 [TBL] [Abstract][Full Text] [Related]
46. The effects of acetylcolletotrichin on the mitochondrial respiratory chain. Foucher B; Chappell JB; McGivan JD Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992 [TBL] [Abstract][Full Text] [Related]
47. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins. Mikkelsen RB; Wallach DF Biochim Biophys Acta; 1976 May; 433(3):674-83. PubMed ID: 6061 [TBL] [Abstract][Full Text] [Related]
48. Manganese distribution across the blood-brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Crossgrove JS; Yokel RA Neurotoxicology; 2004 Mar; 25(3):451-60. PubMed ID: 15019308 [TBL] [Abstract][Full Text] [Related]
49. Manganese content and high-affinity transport in liver and hepatoma. Galeotti T; Palombini G; van Rossum GD Arch Biochem Biophys; 1995 Oct; 322(2):453-9. PubMed ID: 7574721 [TBL] [Abstract][Full Text] [Related]
50. The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy. Barden JA; dos Remedios CG J Biochem; 1984 Sep; 96(3):913-21. PubMed ID: 6501270 [TBL] [Abstract][Full Text] [Related]
51. The uptake of oxalate by rat liver and kidney mitochondria. Strzelecki T; Menon M J Biol Chem; 1986 Sep; 261(26):12197-201. PubMed ID: 3745185 [TBL] [Abstract][Full Text] [Related]
52. Iron bound to the high-affinity Mn-binding site of the oxygen-evolving complex shifts the pK of a component controlling electron transport via Y(Z). Semin BK; Seibert M Biochemistry; 2004 Jun; 43(21):6772-82. PubMed ID: 15157111 [TBL] [Abstract][Full Text] [Related]
53. Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. Porter RK; Scott JM; Brand MD J Biol Chem; 1992 Jul; 267(21):14637-46. PubMed ID: 1634511 [TBL] [Abstract][Full Text] [Related]
54. Generic tags for Mn(ii) and Gd(iii) spin labels for distance measurements in proteins. Yang Y; Gong YJ; Litvinov A; Liu HK; Yang F; Su XC; Goldfarb D Phys Chem Chem Phys; 2017 Oct; 19(39):26944-26956. PubMed ID: 28956044 [TBL] [Abstract][Full Text] [Related]
55. A proton-relaxation enhancement study of the interaction of manganous ions with phospholipids in aqueous dispersions. Nolden PW; Ackermann T Biophys Chem; 1975 Jul; 3(3):183-91. PubMed ID: 169926 [TBL] [Abstract][Full Text] [Related]
56. Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals. Rasgado-Flores H; Sanchez-Armass S; Blaustein MP; Nachshen DA Am J Physiol; 1987 Jun; 252(6 Pt 1):C604-10. PubMed ID: 3591930 [TBL] [Abstract][Full Text] [Related]
57. Mechanism of carrier-mediated glutamine transport across the inner mitochondrial membrane. Kovacević Z Curr Probl Clin Biochem; 1977 Oct 23-26; 8():254-64. PubMed ID: 616364 [TBL] [Abstract][Full Text] [Related]
58. Intramitochondrial positions of ubiquinone and iron-sulphur centres determined by dipolar interactions with paramagnetic ions. Case GD; Ohnishi T; Leigh JS Biochem J; 1976 Dec; 160(3):785-95. PubMed ID: 189759 [TBL] [Abstract][Full Text] [Related]
59. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. Barritt GJ; Parker JC; Wadsworth JC J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996 [TBL] [Abstract][Full Text] [Related]
60. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy. Pierce BS; Elgren TE; Hendrich MP J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]