These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 1631021)
1. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase. Schved F; Kahn V Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021 [TBL] [Abstract][Full Text] [Related]
2. Effect of different isomers of dihydroxybenzoic acids (DBA) on the rate of DL-dopa oxidation by mushroom tyrosinase. Schved F; Kahn V Pigment Cell Res; 1992 Mar; 5(2):58-64. PubMed ID: 1631023 [TBL] [Abstract][Full Text] [Related]
3. The role of pH in the melanin biosynthesis pathway. Cánovas FG; García-Carmona F; Sánchez JV; Pastor JL; Teruel JA J Biol Chem; 1982 Aug; 257(15):8738-44. PubMed ID: 6807981 [TBL] [Abstract][Full Text] [Related]
4. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry. Korytowski W; Sarna T; Kalyanaraman B; Sealy RC Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Sugumaran M; Bolton J Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501 [TBL] [Abstract][Full Text] [Related]
6. Effect of methimazole on the activity of mushroom tyrosinase. Andrawis A; Kahn V Biochem J; 1986 Apr; 235(1):91-6. PubMed ID: 3091005 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
8. Effect of maltol on the oxidation of DL-DOPA, dopamine, N-acetyldopamine (NADA), and norepinephrine by mushroom tyrosinase. Kahn V; Ben-Shalom N Pigment Cell Res; 1997 Jun; 10(3):139-49. PubMed ID: 9266600 [TBL] [Abstract][Full Text] [Related]
9. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
10. Effect of kojic acid on the oxidation of DL-DOPA, norepinephrine, and dopamine by mushroom tyrosinase. Kahn V Pigment Cell Res; 1995 Oct; 8(5):234-40. PubMed ID: 8789197 [TBL] [Abstract][Full Text] [Related]
11. A study on the in vitro interaction between tyrosinase and glutathione S-transferase. Miranda M; di Ilio C; Bonfigli A; Arcadi A; Pitari G; Dupre S; Federici G; del Boccio G Biochim Biophys Acta; 1987 Jul; 913(3):386-94. PubMed ID: 3109490 [TBL] [Abstract][Full Text] [Related]
12. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone. Naish S; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921 [TBL] [Abstract][Full Text] [Related]
13. Major primary cytotoxic product of 4-hydroxyanisole oxidation by mushroom tyrosinase is 4-methoxy ortho benzoquinone. Naish S; Holden JL; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):382-5. PubMed ID: 3148922 [TBL] [Abstract][Full Text] [Related]
14. An electrometric method for the determination of tyrosinase activity. Solano-Muñoz F; Peñafiel R; Galindo JD Biochem J; 1985 Aug; 229(3):573-8. PubMed ID: 2996485 [TBL] [Abstract][Full Text] [Related]
15. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells. Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899 [TBL] [Abstract][Full Text] [Related]
16. Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones. Dagnino-Subiabre A; Cassels BK; Baez S; Johansson AS; Mannervik B; Segura-Aguilar J Biochem Biophys Res Commun; 2000 Jul; 274(1):32-6. PubMed ID: 10903891 [TBL] [Abstract][Full Text] [Related]
17. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine. Sugumaran M; Nelson E Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds. Metodiewa D; Reszka K; Dunford HB Arch Biochem Biophys; 1989 Nov; 274(2):601-8. PubMed ID: 2552928 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Krol ES; Bolton JL Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692 [TBL] [Abstract][Full Text] [Related]
20. The role of 2,4,5-trihydroxyphenylalanine in melanin biosynthesis. Graham DG; Jeffs PW J Biol Chem; 1977 Aug; 252(16):5729-34. PubMed ID: 195958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]