These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16310308)

  • 61. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
    Aouni A; Fersi C; Ben Sik Ali M; Dhahbi M
    J Hazard Mater; 2009 Sep; 168(2-3):868-74. PubMed ID: 19369000
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Treatment of wood industry wastewater by combined coagulation-flocculation-decantation and fenton process.
    Azimi SC; Shirini F; Pendashteh A
    Water Environ Res; 2021 Mar; 93(3):433-444. PubMed ID: 32854137
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Color removal from textile industry wastewater using composite flocculants.
    Wang Y; Gao BY; Yue QY; Wei JC; Zhou WZ; Gu R
    Environ Technol; 2007 Jun; 28(6):629-37. PubMed ID: 17624103
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization.
    El Samrani AG; Lartiges BS; Villiéras F
    Water Res; 2008 Feb; 42(4-5):951-60. PubMed ID: 17961629
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater.
    Ansari S; Alavi J; Yaseen ZM
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33978-33991. PubMed ID: 30280337
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.
    Helness H; Melin E; Ulgenes Y; Järvinen P; Rasmussen V; Odegaard H
    Water Sci Technol; 2005; 52(10-11):117-27. PubMed ID: 16459783
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process.
    Wang BY; Chen ZL; Zhu J; Shen JM; Han Y
    Water Sci Technol; 2013; 68(1):134-43. PubMed ID: 23823549
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cationic tamarind kernel polysaccharide (Cat TKP): A novel polymeric flocculant for the treatment of textile industry wastewater.
    Pal S; Ghosh S; Sen G; Jha U; Singh RP
    Int J Biol Macromol; 2009 Dec; 45(5):518-23. PubMed ID: 19715719
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Treatment of desizing wastewater by catalytic thermal treatment and coagulation.
    Kumar P; Prasad B; Chand S
    J Hazard Mater; 2009 Apr; 163(1):433-40. PubMed ID: 18687524
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes.
    Durán A; Monteagudo JM; Sanmartín I; García-Peña F; Coca P
    J Environ Manage; 2009 Mar; 90(3):1370-6. PubMed ID: 18801608
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment.
    de Godos I; Guzman HO; Soto R; García-Encina PA; Becares E; Muñoz R; Vargas VA
    Bioresour Technol; 2011 Jan; 102(2):923-7. PubMed ID: 20933398
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Physico-chemical treatment for the depuration of wine distillery wastewaters (vinasses).
    de Heredia JB; Dominguez JR; Partido E
    Water Sci Technol; 2005; 51(1):159-66. PubMed ID: 15771112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Physico-chemical characteristics of paper industry effluents--a case study.
    Suriyanarayanan S; Jayakumar D; Balasubramanian S
    J Environ Sci Eng; 2005 Apr; 47(2):155-60. PubMed ID: 16649620
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The application of novel coagulant reagent (polyaluminium silicate chloride) for the post-treatment of landfill leachates.
    Tzoupanos ND; Zouboulis AI; Zhao YC
    Chemosphere; 2008 Oct; 73(5):729-36. PubMed ID: 18678391
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Treatment of phosphate-containing oily wastewater by coagulation and microfiltration.
    Zhang J; Sun YX; Huang ZF; Liu XQ; Meng GY
    J Environ Sci (China); 2006; 18(4):629-33. PubMed ID: 17078536
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using
    Mosaddeghi MR; Pajoum Shariati F; Vaziri Yazdi SA; Nabi Bidhendi G
    Environ Technol; 2020 Jan; 41(1):100-108. PubMed ID: 29927723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ozonation strategies to reduce sludge production of a seafood industry WWTP.
    Campos JL; Otero L; Franco A; Mosquera-Corral A; Roca E
    Bioresour Technol; 2009 Feb; 100(3):1069-73. PubMed ID: 18835774
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater.
    Silva MR; Coelho MA; Cammarota MC
    J Hazard Mater; 2008 Jan; 150(2):438-45. PubMed ID: 17583427
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process.
    Xing ZP; Sun DZ
    J Hazard Mater; 2009 Sep; 168(2-3):1264-8. PubMed ID: 19345002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.