These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 16310365)
1. Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants. Gadjieva R; Axelsson E; Olsson U; Hansson M Plant Physiol Biochem; 2005; 43(10-11):901-8. PubMed ID: 16310365 [TBL] [Abstract][Full Text] [Related]
2. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Jensen PE; Willows RD; Petersen BL; Vothknecht UC; Stummann BM; Kannangara CG; von Wettstein D; Henningsen KW Mol Gen Genet; 1996 Mar; 250(4):383-94. PubMed ID: 8602155 [TBL] [Abstract][Full Text] [Related]
3. Heterologous Expression of the Barley (Hordeum vulgare L.) Xantha-f, -g and -h Genes that Encode Magnesium Chelatase Subunits. Mahdi R; Stuart D; Hansson M; Youssef HM Protein J; 2020 Oct; 39(5):554-562. PubMed ID: 32737834 [TBL] [Abstract][Full Text] [Related]
5. Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Rzeznicka K; Walker CJ; Westergren T; Kannangara CG; von Wettstein D; Merchant S; Gough SP; Hansson M Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5886-91. PubMed ID: 15824317 [TBL] [Abstract][Full Text] [Related]
6. Parallel pigment and transcriptomic analysis of four barley albina and xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Campoli C; Caffarri S; Svensson JT; Bassi R; Stanca AM; Cattivelli L; Crosatti C Plant Mol Biol; 2009 Sep; 71(1-2):173-91. PubMed ID: 19557521 [TBL] [Abstract][Full Text] [Related]
7. Characterization of eight barley xantha-f mutants deficient in magnesium chelatase. Olsson U; Sirijovski N; Hansson M Plant Physiol Biochem; 2004 Jun; 42(6):557-64. PubMed ID: 15246070 [TBL] [Abstract][Full Text] [Related]
8. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Kannangara CG; Vothknecht UC; Hansson M; von Wettstein D Mol Gen Genet; 1997 Mar; 254(1):85-92. PubMed ID: 9108294 [TBL] [Abstract][Full Text] [Related]
9. Comparing two microarray platforms for identifying mutated genes in barley (Hordeum vulgare L.). Zakhrabekova S; Gough SP; Lundqvist U; Hansson M Plant Physiol Biochem; 2007 Aug; 45(8):617-22. PubMed ID: 17606380 [TBL] [Abstract][Full Text] [Related]
10. The Ycf54 protein is part of the membrane component of Mg-protoporphyrin IX monomethyl ester cyclase from barley (Hordeum vulgare L.). Bollivar D; Braumann I; Berendt K; Gough SP; Hansson M FEBS J; 2014 May; 281(10):2377-86. PubMed ID: 24661504 [TBL] [Abstract][Full Text] [Related]
11. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Zhang H; Li J; Yoo JH; Yoo SC; Cho SH; Koh HJ; Seo HS; Paek NC Plant Mol Biol; 2006 Oct; 62(3):325-37. PubMed ID: 16915519 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Falbel TG; Staehelin LA Plant Physiol; 1994 Feb; 104(2):639-48. PubMed ID: 8159789 [TBL] [Abstract][Full Text] [Related]
13. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling. Pontier D; Albrieux C; Joyard J; Lagrange T; Block MA J Biol Chem; 2007 Jan; 282(4):2297-304. PubMed ID: 17135235 [TBL] [Abstract][Full Text] [Related]
14. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Hansson A; Kannangara CG; von Wettstein D; Hansson M Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1744-9. PubMed ID: 9990095 [TBL] [Abstract][Full Text] [Related]
15. A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway. Gough SP; Rzeznicka K; Peterson Wulff R; Francisco Jda C; Hansson A; Jensen PE; Hansson M Plant Physiol Biochem; 2007 Dec; 45(12):932-6. PubMed ID: 17949988 [TBL] [Abstract][Full Text] [Related]
16. Introduction of a new branchpoint in tetrapyrrole biosynthesis in Escherichia coli by co-expression of genes encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase. Jensen PE; Gibson LC; Shephard F; Smith V; Hunter CN FEBS Lett; 1999 Jul; 455(3):349-54. PubMed ID: 10437802 [TBL] [Abstract][Full Text] [Related]
17. Aerobic Barley Mg-protoporphyrin IX Monomethyl Ester Cyclase is Powered by Electrons from Ferredoxin. Stuart D; Sandström M; Youssef HM; Zakhrabekova S; Jensen PE; Bollivar DW; Hansson M Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32911631 [TBL] [Abstract][Full Text] [Related]
18. The implication of a plastid-derived factor in the transcriptional control of nuclear genes encoding the light-harvesting chlorophyll a/b protein. Batschauer A; Mösinger E; Kreuz K; Dörr I; Apel K Eur J Biochem; 1986 Feb; 154(3):625-34. PubMed ID: 2868896 [TBL] [Abstract][Full Text] [Related]
19. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. Masuda T; Inoue K; Masuda M; Nagayama M; Tamaki A; Ohta H; Shimada H; Takamiya K J Biol Chem; 1999 Nov; 274(47):33594-600. PubMed ID: 10559247 [TBL] [Abstract][Full Text] [Related]
20. Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Axelsson E; Lundqvist J; Sawicki A; Nilsson S; Schröder I; Al-Karadaghi S; Willows RD; Hansson M Plant Cell; 2006 Dec; 18(12):3606-16. PubMed ID: 17158606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]