BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 16310381)

  • 21. Seven new mutations in the nicotinamide adenine dinucleotide reduced-cytochrome b(5) reductase gene leading to methemoglobinemia type I.
    Dekker J; Eppink MH; van Zwieten R; de Rijk T; Remacha AF; Law LK; Li AM; Cheung KL; van Berkel WJ; Roos D
    Blood; 2001 Feb; 97(4):1106-14. PubMed ID: 11159544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical spectrum and molecular basis of recessive congenital methemoglobinemia in India.
    Warang PP; Kedar PS; Shanmukaiah C; Ghosh K; Colah RB
    Clin Genet; 2015; 87(1):62-7. PubMed ID: 24266649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Clinical and biological forms of cytochrome b5 reductase deficiency].
    Kaplan JC; Leroux A; Beauvais P
    C R Seances Soc Biol Fil; 1979; 173(2):368-79. PubMed ID: 159760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis.
    Aalfs CM; Salieb-Beugelaar GB; Wanders RJ; Mannens MM; Wijburg FA
    Hum Mutat; 2000; 16(1):18-22. PubMed ID: 10874300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel mutation (R192C) in CYB5R3 gene causing NADH-cytochrome b5 reductase deficiency in eight Indian patients associated with autosomal recessive congenital methemoglobinemia type-I.
    Kedar PS; Gupta V; Warang P; Chiddarwar A; Madkaikar M
    Hematology; 2018 Sep; 23(8):567-573. PubMed ID: 29482478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ; Desai SK; Marohnic CC
    Arch Biochem Biophys; 2001 Oct; 394(1):99-110. PubMed ID: 11566032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recessive hereditary methaemoglobinaemia, type II: delineation of the clinical spectrum.
    Ewenczyk C; Leroux A; Roubergue A; Laugel V; Afenjar A; Saudubray JM; Beauvais P; Billette de Villemeur T; Vidailhet M; Roze E
    Brain; 2008 Mar; 131(Pt 3):760-1. PubMed ID: 18202104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymopenic hereditary methemoglobinemia: a clinical/biochemical classification.
    Jaffé ER
    Blood Cells; 1986; 12(1):81-90. PubMed ID: 3539237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four new mutations in the NADH-cytochrome b5 reductase gene from patients with recessive congenital methemoglobinemia type II.
    Vieira LM; Kaplan JC; Kahn A; Leroux A
    Blood; 1995 Apr; 85(8):2254-62. PubMed ID: 7718898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase.
    Marohnic CC; Barber MJ
    Arch Biochem Biophys; 2001 May; 389(2):223-33. PubMed ID: 11339812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and mechanistic roles of three consecutive Pro residues of porcine NADH-cytochrome b(5) reductase for the binding of beta-NADH.
    Nishimura Y; Shibuya M; Muraki A; Takeuchi F; Park SY; Tsubaki M
    J Biosci Bioeng; 2009 Oct; 108(4):286-92. PubMed ID: 19716516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Leu 72 Pro mutation in the NADH-cytochrome b5 reductase gene found in a Chinese hereditary methemoglobinemia patient].
    Wu Y; Huang C; Zhu Z
    Zhonghua Xue Ye Xue Za Zhi; 1998 Apr; 19(4):195-7. PubMed ID: 11243135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Severe mental retardation and recessive congenital methemoglobinemia in three Indian patients: compound heterozygous for NADH-cytochrome b5 reductase gene mutations.
    Kedar PS; Warang P; Ghosh K; Colah RB
    Am J Hematol; 2011 Mar; 86(3):327-9. PubMed ID: 21328435
    [No Abstract]   [Full Text] [Related]  

  • 36. Congenital methaemoglobinaemia Type I in a Turkish infant due to a novel mutation, Pro144Ser, in NADH-cytochrome b5 reductase.
    Percy MJ; Oren H; Savage G; Irken G
    Hematol J; 2004; 5(4):367-70. PubMed ID: 15297856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recessive congenital methemoglobinemia caused by a rare mechanism: maternal uniparental heterodisomy with segmental isodisomy of a chromosome 22.
    Huang YH; Tai CL; Lu YH; Wu TJ; Chen HD; Niu DM
    Blood Cells Mol Dis; 2012 Aug; 49(2):114-7. PubMed ID: 22658170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Congenital Recessive Methemoglobinemia Revealed in Adulthood: Description of a New Mutation in Cytochrome b5 Reductase Gene.
    Forestier A; Pissard S; Cretet J; Mambie A; Pascal L; Cliquennois M; Cambier N; Rose C
    Hemoglobin; 2015; 39(6):438-41. PubMed ID: 26291966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutation update: Variants of the CYB5R3 gene in recessive congenital methemoglobinemia.
    Gupta V; Kulkarni A; Warang P; Devendra R; Chiddarwar A; Kedar P
    Hum Mutat; 2020 Apr; 41(4):737-748. PubMed ID: 31898843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular basis of two novel mutations found in type I methemoglobinemia.
    Lorenzo FR; Phillips JD; Nussenzveig R; Lingam B; Koul PA; Schrier SL; Prchal JT
    Blood Cells Mol Dis; 2011 Apr; 46(4):277-81. PubMed ID: 21349748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.