These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16310848)

  • 1. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells.
    Bäckdahl H; Helenius G; Bodin A; Nannmark U; Johansson BR; Risberg B; Gatenholm P
    Biomaterials; 2006 Mar; 27(9):2141-9. PubMed ID: 16310848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose.
    Wippermann J; Schumann D; Klemm D; Kosmehl H; Salehi-Gelani S; Wahlers T
    Eur J Vasc Endovasc Surg; 2009 May; 37(5):592-6. PubMed ID: 19231251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.
    Svensson A; Nicklasson E; Harrah T; Panilaitis B; Kaplan DL; Brittberg M; Gatenholm P
    Biomaterials; 2005 Feb; 26(4):419-31. PubMed ID: 15275816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering microporosity in bacterial cellulose scaffolds.
    Bäckdahl H; Esguerra M; Delbro D; Risberg B; Gatenholm P
    J Tissue Eng Regen Med; 2008 Aug; 2(6):320-30. PubMed ID: 18615821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biocompatibility of bacterial cellulose.
    Helenius G; Bäckdahl H; Bodin A; Nannmark U; Gatenholm P; Risberg B
    J Biomed Mater Res A; 2006 Feb; 76(2):431-8. PubMed ID: 16278860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of bioactive molecules through the walls of the medial tissue-engineered hybrid ePTFE grafts for applications in designs of vascular tissue regeneration.
    Noh I; Choi YJ; Son Y; Kim CH; Hong SH; Hong CM; Shin IS; Park SN; Park BY
    J Biomed Mater Res A; 2006 Dec; 79(4):943-53. PubMed ID: 16941597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model.
    Malm CJ; Risberg B; Bodin A; Bäckdahl H; Johansson BR; Gatenholm P; Jeppsson A
    Scand Cardiovasc J; 2012 Feb; 46(1):57-62. PubMed ID: 22029845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Experimental study on tissue engineered blood vessel reconstruction with bionanotechnology].
    Zheng X; Qiao T; Ran F; Liu C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):92-6. PubMed ID: 18361248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose as a potential meniscus implant.
    Bodin A; Concaro S; Brittberg M; Gatenholm P
    J Tissue Eng Regen Med; 2007; 1(5):406-8. PubMed ID: 18038435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts.
    Zorlutuna P; Vadgama P; Hasirci V
    J Tissue Eng Regen Med; 2010 Dec; 4(8):628-37. PubMed ID: 20603868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of different stress environments on growth of tissue engineering blood vessels].
    Han B; Fan C; Liu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Mar; 21(3):302-6. PubMed ID: 17419217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts.
    Esguerra M; Fink H; Laschke MW; Jeppsson A; Delbro D; Gatenholm P; Menger MD; Risberg B
    J Biomed Mater Res A; 2010 Apr; 93(1):140-9. PubMed ID: 19536832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique.
    Vaz CM; van Tuijl S; Bouten CV; Baaijens FP
    Acta Biomater; 2005 Sep; 1(5):575-82. PubMed ID: 16701837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotating versus perfusion bioreactor for the culture of engineered vascular constructs based on hyaluronic acid.
    Arrigoni C; Chittò A; Mantero S; Remuzzi A
    Biotechnol Bioeng; 2008 Aug; 100(5):988-97. PubMed ID: 18383121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall.
    Butcher JT; Barrett BC; Nerem RM
    Biomaterials; 2006 Oct; 27(30):5252-8. PubMed ID: 16806457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft.
    Liu GF; He ZJ; Yang DP; Han XF; Guo TF; Hao CG; Ma H; Nie CL
    Chin Med J (Engl); 2008 Aug; 121(15):1398-406. PubMed ID: 18959117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.
    Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL
    Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.