These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 16310939)
1. Treatment of olive mill effluents by coagulation-flocculation-hydrogen peroxide oxidation and effect on phytotoxicity. Ginos A; Manios T; Mantzavinos D J Hazard Mater; 2006 May; 133(1-3):135-42. PubMed ID: 16310939 [TBL] [Abstract][Full Text] [Related]
2. Treatment of olive mill effluents Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Sarika R; Kalogerakis N; Mantzavinos D Environ Int; 2005 Feb; 31(2):297-304. PubMed ID: 15661298 [TBL] [Abstract][Full Text] [Related]
3. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Michael I; Panagi A; Ioannou LA; Frontistis Z; Fatta-Kassinos D Water Res; 2014 Sep; 60():28-40. PubMed ID: 24815102 [TBL] [Abstract][Full Text] [Related]
4. Olive mill wastewater pretreatment by combination of filtration on olive stone filters and coagulation-flocculation. Enaime G; Baçaoui A; Yaacoubi A; Wichern M; Lübken M Environ Technol; 2019 Jul; 40(16):2135-2146. PubMed ID: 29421956 [TBL] [Abstract][Full Text] [Related]
5. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent. Gomec CY; Erdim E; Turan I; Aydin AF; Ozturk I J Environ Sci Health B; 2007 Aug; 42(6):741-7. PubMed ID: 17701710 [TBL] [Abstract][Full Text] [Related]
6. The combination of coagulation, acid cracking and Fenton-like processes for olive oil mill wastewater treatment: phytotoxicity reduction and biodegradability augmentation. Yazdanbakhsh A; Mehdipour F; Eslami A; Maleksari HS; Ghanbari F Water Sci Technol; 2015; 71(7):1097-105. PubMed ID: 25860714 [TBL] [Abstract][Full Text] [Related]
7. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Ioannou-Ttofa L; Michael-Kordatou I; Fattas SC; Eusebio A; Ribeiro B; Rusan M; Amer AR; Zuraiqi S; Waismand M; Linder C; Wiesman Z; Gilron J; Fatta-Kassinos D Water Res; 2017 May; 114():1-13. PubMed ID: 28214720 [TBL] [Abstract][Full Text] [Related]
8. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Esfandyari Y; Mahdavi Y; Seyedsalehi M; Hoseini M; Safari GH; Ghozikali MG; Kamani H; Jaafari J Environ Sci Pollut Res Int; 2015 Apr; 22(8):6288-97. PubMed ID: 25408073 [TBL] [Abstract][Full Text] [Related]
9. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant. Bhatia S; Othman Z; Ahmad AL J Hazard Mater; 2007 Jun; 145(1-2):120-6. PubMed ID: 17141409 [TBL] [Abstract][Full Text] [Related]
10. Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment. Uğurlu M; Kula I Environ Sci Pollut Res Int; 2007 Jul; 14(5):319-25. PubMed ID: 17722766 [TBL] [Abstract][Full Text] [Related]
11. Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters. Amaral-Silva N; Martins RC; Castro-Silva S; Quinta-Ferreira RM Environ Technol; 2016 Oct; 37(19):2524-35. PubMed ID: 26878594 [TBL] [Abstract][Full Text] [Related]
12. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. Zayas Pérez T; Geissler G; Hernandez F J Environ Sci (China); 2007; 19(3):300-5. PubMed ID: 17918591 [TBL] [Abstract][Full Text] [Related]
13. Hybrid zero valent iron (ZVI)/H Lee SD; Mallampati SR; Lee BH J Air Waste Manag Assoc; 2017 Apr; 67(4):475-487. PubMed ID: 27802127 [TBL] [Abstract][Full Text] [Related]
14. Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment. da Costa Filho BM; da Silva VM; Silva Jde O; da Hora Machado AE; Trovó AG J Environ Manage; 2016 Jun; 174():71-8. PubMed ID: 27016714 [TBL] [Abstract][Full Text] [Related]
15. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry. Amuda OS; Amoo IA; Ajayi OO J Hazard Mater; 2006 Feb; 129(1-3):69-72. PubMed ID: 16310308 [TBL] [Abstract][Full Text] [Related]
16. Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton's oxidation. Guerreiro LF; Rodrigues CSD; Duda RM; de Oliveira RA; Boaventura RAR; Madeira LM J Environ Manage; 2016 Oct; 181():237-248. PubMed ID: 27353374 [TBL] [Abstract][Full Text] [Related]
17. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Kallel M; Belaid C; Boussahel R; Ksibi M; Montiel A; Elleuch B J Hazard Mater; 2009 Apr; 163(2-3):550-4. PubMed ID: 18722712 [TBL] [Abstract][Full Text] [Related]
18. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst. Uğurlu M; Karaoğlu MH Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234 [TBL] [Abstract][Full Text] [Related]
19. Effect of Fenton's oxidation on the particle size distribution of organic carbon in olive mill wastewater. Dogruel S; Olmez-Hanci T; Kartal Z; Arslan-Alaton I; Orhon D Water Res; 2009 Sep; 43(16):3974-83. PubMed ID: 19577271 [TBL] [Abstract][Full Text] [Related]
20. Treatment of high strength olive mill wastewater by Fenton's reagent and aerobic biological process. Lucas MS; Beltrán-Heredia J; Sanchez-Martin J; Garcia J; Peres JA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):954-62. PubMed ID: 23485247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]