These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 163128)

  • 1. Utilization of triaryl phosphates by a mixed bacterial population.
    Pickard MA; Whelihan JA; Westlake DW
    Can J Microbiol; 1975 Feb; 21(2):140-5. PubMed ID: 163128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source.
    McLoughlin SY; Jackson C; Liu JW; Ollis DL
    Appl Environ Microbiol; 2004 Jan; 70(1):404-12. PubMed ID: 14711669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of 2-phosphonobutane-1,2,4-tricarboxylic acid as source of phosphorus by environmental bacterial isolates.
    Raschke H; Rast HG; Kleinstück R; Sicius H; Wischer D
    Chemosphere; 1994 Jul; 29(1):81-8. PubMed ID: 8044636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of malathion by salt-marsh microorganisms.
    Bourquin AW
    Appl Environ Microbiol; 1977 Feb; 33(2):356-62. PubMed ID: 192147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triphenyl phosphate allergy from spectacle frames.
    Carlsen L; Andersen KE; Egsgaard H
    Contact Dermatitis; 1986 Nov; 15(5):274-7. PubMed ID: 3816190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organophosphate-induced delayed neurotoxicity of triarylphosphates.
    Weiner ML; Jortner BS
    Neurotoxicology; 1999 Aug; 20(4):653-73. PubMed ID: 10499364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial cleavage of various organophosphorus insecticides.
    Rosenberg A; Alexander M
    Appl Environ Microbiol; 1979 May; 37(5):886-91. PubMed ID: 225990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria.
    Cook AM; Daughton CG; Alexander M
    Appl Environ Microbiol; 1978 Nov; 36(5):668-72. PubMed ID: 727784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies on degradation of nucleotides catalyzed by phosphodiesterase-phosphomonoesterase from Fusarium moniliforme.
    Yoshida H; Watanabe T; Ishida H
    J Biochem; 1984 Oct; 96(4):971-6. PubMed ID: 6097592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.
    Solbu K; Thorud S; Hersson M; Ovrebø S; Ellingsen DG; Lundanes E; Molander P
    J Chromatogr A; 2007 Aug; 1161(1-2):275-83. PubMed ID: 17574560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a phorate degrading bacterium.
    Rani R; Lal R; Kanade GS; Juwarkar A
    Lett Appl Microbiol; 2009 Jul; 49(1):112-6. PubMed ID: 19413758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites.
    Daughton CG; Cook AM; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):605-9. PubMed ID: 453832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater.
    Vasileva-Tonkova E; Galabova D
    Z Naturforsch C J Biosci; 2003; 58(1-2):87-92. PubMed ID: 12622233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degradation of sodium O,O-diethyl dithiophosphate by bacteria from metalworking fluids.
    Sherburn RE; Large PJ
    Lett Appl Microbiol; 1999 Jan; 28(1):61-5. PubMed ID: 10030034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides.
    Abd-Alla MH
    Lett Appl Microbiol; 1994 Oct; 19(4):240-3. PubMed ID: 7765398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.
    Story S; Brigmon RL
    Ecotoxicol Environ Saf; 2017 Mar; 137():165-171. PubMed ID: 27936402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of diverse organophosphorus pollutants by marine bacteria.
    Despotović D; Aharon E; Trofimyuk O; Dubovetskyi A; Cherukuri KP; Ashani Y; Eliason O; Sperfeld M; Leader H; Castelli A; Fumagalli L; Savidor A; Levin Y; Longo LM; Segev E; Tawfik DS
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203604119. PubMed ID: 35917352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and cleanup of fish, sediment, and water for determination of triaryl phosphates by gas-liquid chromatography.
    Muir DC; Grift NP; Solomon J
    J Assoc Off Anal Chem; 1981 Jan; 64(1):79-84. PubMed ID: 7204313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of fenamiphos degrading bacteria.
    Cabrera JA; Kurtz A; Sikora RA; Schouten A
    Biodegradation; 2010 Nov; 21(6):1017-27. PubMed ID: 20464454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.