These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16313404)

  • 1. Interaction of air ions and bactericidal vapours to control micro-organisms.
    Gaunt LF; Higgins SC; Hughes JF
    J Appl Microbiol; 2005; 99(6):1324-9. PubMed ID: 16313404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens.
    Tyagi AK; Malik A
    Int J Food Microbiol; 2010 Oct; 143(3):205-10. PubMed ID: 20850191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems.
    Fisher K; Phillips CA
    J Appl Microbiol; 2006 Dec; 101(6):1232-40. PubMed ID: 17105553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and antibacterial activity of Abies balsamea essential oil.
    Pichette A; Larouche PL; Lebrun M; Legault J
    Phytother Res; 2006 May; 20(5):371-3. PubMed ID: 16619365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of ionization of the air on some bacterial strains].
    Marin V; Moretti G; Rassu M
    Ann Ig; 1989; 1(6):1491-500. PubMed ID: 2484482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the antibacterial activity of phanquone: chelating properties in relation to mode of action against Escherichia coli and Staphylococcus aureus.
    Husseini R; Stretton RJ
    Microbios; 1980; 29(116):109-25. PubMed ID: 7022141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity.
    Cristani M; D'Arrigo M; Mandalari G; Castelli F; Sarpietro MG; Micieli D; Venuti V; Bisignano G; Saija A; Trombetta D
    J Agric Food Chem; 2007 Jul; 55(15):6300-8. PubMed ID: 17602646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro studies on the antibacterial activity of phenoxyethanol in combination with lemon grass oil.
    Onawunmi GO
    Pharmazie; 1988 Jan; 43(1):42-4. PubMed ID: 3287398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial effects of chitosan solution against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus.
    Fujimoto T; Tsuchiya Y; Terao M; Nakamura K; Yamamoto M
    Int J Food Microbiol; 2006 Nov; 112(2):96-101. PubMed ID: 17045689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for screening of volatile antimicrobial compounds.
    Singh RP
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):145-8. PubMed ID: 21203745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems.
    Fernandes JC; Tavaria FK; Soares JC; Ramos OS; João Monteiro M; Pintado ME; Xavier Malcata F
    Food Microbiol; 2008 Oct; 25(7):922-8. PubMed ID: 18721683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Problems associated with traditional hygiene swabbing: the need for in-house standardization.
    Moore G; Griffith C
    J Appl Microbiol; 2007 Oct; 103(4):1090-103. PubMed ID: 17897214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and antibacterial activity of essential oils from leaf, stem and root of Chrysanthemum parthenium (L.) Bernh. from Iran.
    Shafaghat A; Sadeghi H; Oji K
    Nat Prod Commun; 2009 Jun; 4(6):859-60. PubMed ID: 19634337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of domestic antibacterial products in decontaminating food contact surfaces.
    DeVere E; Purchase D
    Food Microbiol; 2007 Jun; 24(4):425-30. PubMed ID: 17189769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activity of essential oils on the growth of Staphylococcus aureus and measurement of their binding interaction using optical biosensor.
    Chung KH; Yang KS; Kim J; Kim JC; Lee KY
    J Microbiol Biotechnol; 2007 Nov; 17(11):1848-55. PubMed ID: 18092470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria.
    Si W; Gong J; Tsao R; Zhou T; Yu H; Poppe C; Johnson R; Du Z
    J Appl Microbiol; 2006 Feb; 100(2):296-305. PubMed ID: 16430506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial activity in vitro of Thymus capitatus from Jordan.
    Qaralleh HN; Abboud MM; Khleifat KM; Tarawneh KA; Althunibat OY
    Pak J Pharm Sci; 2009 Jul; 22(3):247-51. PubMed ID: 19553168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A newly developed assay to study the minimum inhibitory concentration of Satureja spinosa essential oil.
    Chorianopoulos NG; Lambert RJ; Skandamis PN; Evergetis ET; Haroutounian SA; Nychas GJ
    J Appl Microbiol; 2006 Apr; 100(4):778-86. PubMed ID: 16553733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical composition and inhibitory parameters of essential oil and extracts of Nandina domestica Thunb. to control food-borne pathogenic and spoilage bacteria.
    Bajpai VK; Rahman A; Kang SC
    Int J Food Microbiol; 2008 Jul; 125(2):117-22. PubMed ID: 18541324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial effect of silver-doped phosphate-based glasses.
    Ahmed I; Ready D; Wilson M; Knowles JC
    J Biomed Mater Res A; 2006 Dec; 79(3):618-26. PubMed ID: 16826601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.