These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 16313415)
1. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Hogan CJ; Kettleson EM; Lee MH; Ramaswami B; Angenent LT; Biswas P J Appl Microbiol; 2005; 99(6):1422-34. PubMed ID: 16313415 [TBL] [Abstract][Full Text] [Related]
2. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Brouwer DH; Gijsbers JH; Lurvink MW Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340 [TBL] [Abstract][Full Text] [Related]
3. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling. Riemenschneider L; Woo MH; Wu CY; Lundgren D; Wander J; Lee JH; Li HW; Heimbuch B J Appl Microbiol; 2010 Jan; 108(1):315-24. PubMed ID: 20002911 [TBL] [Abstract][Full Text] [Related]
4. Bioaerosol concentrator performance: comparative tests with viable and with solid and liquid nonviable particles. Kesavan J; Bottiger JR; McFarland AR J Appl Microbiol; 2008 Jan; 104(1):285-95. PubMed ID: 17922825 [TBL] [Abstract][Full Text] [Related]
5. Personal air samplers for measuring occupational exposures to biological hazards. Macher JM; First MW Am Ind Hyg Assoc J; 1984 Feb; 45(2):76-83. PubMed ID: 6702610 [TBL] [Abstract][Full Text] [Related]
6. Comparison of high-volume air sampling equipment for viral aerosol sampling during emergency response. Cooper C; Slagley J; Lohaus J; Escamilla E; Bliss C; Semler D; Felker D; Smith D; Ott D J Emerg Manag; 2014; 12(2):161-70. PubMed ID: 24828912 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator. Furuhashi M; Miyamae T Bull Tokyo Med Dent Univ; 1981 Mar; 28(1):7-21. PubMed ID: 7011587 [TBL] [Abstract][Full Text] [Related]
8. Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. Pan M; Eiguren-Fernandez A; Hsieh H; Afshar-Mohajer N; Hering SV; Lednicky J; Hugh Fan Z; Wu CY J Appl Microbiol; 2016 Mar; 120(3):805-15. PubMed ID: 26751045 [TBL] [Abstract][Full Text] [Related]
9. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers. Zamengo L; Barbiero N; Gregio M; Orrù G Chemosphere; 2009 Jul; 76(3):313-23. PubMed ID: 19398120 [TBL] [Abstract][Full Text] [Related]
10. Methods for sampling of airborne viruses. Verreault D; Moineau S; Duchaine C Microbiol Mol Biol Rev; 2008 Sep; 72(3):413-44. PubMed ID: 18772283 [TBL] [Abstract][Full Text] [Related]
11. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices. Godish D; Godish T J Occup Environ Hyg; 2008 Feb; 5(2):100-6. PubMed ID: 18085480 [TBL] [Abstract][Full Text] [Related]
12. Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator. Hong S; Bhardwaj J; Han CH; Jang J Environ Sci Technol; 2016 Nov; 50(22):12365-12372. PubMed ID: 27786464 [TBL] [Abstract][Full Text] [Related]
13. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Fabian P; McDevitt JJ; Houseman EA; Milton DK Indoor Air; 2009 Oct; 19(5):433-41. PubMed ID: 19689447 [TBL] [Abstract][Full Text] [Related]
14. Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. Yao M; Mainelis G J Expo Sci Environ Epidemiol; 2007 Jan; 17(1):31-8. PubMed ID: 16912697 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air. Van Droogenbroeck C; Van Risseghem M; Braeckman L; Vanrompay D Vet Microbiol; 2009 Mar; 135(1-2):31-7. PubMed ID: 18963601 [TBL] [Abstract][Full Text] [Related]
16. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust. Thorpe A Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158 [TBL] [Abstract][Full Text] [Related]
17. The influence of improved air quality on mortality risks in Erfurt, Germany. Peters A; Breitner S; Cyrys J; Stölzel M; Pitz M; Wölke G; Heinrich J; Kreyling W; Küchenhoff H; Wichmann HE Res Rep Health Eff Inst; 2009 Feb; (137):5-77; discussion 79-90. PubMed ID: 19554968 [TBL] [Abstract][Full Text] [Related]
18. A small change in the design of a slit bioaerosol impactor significantly improves its collection characteristics. Grinshpun SA; Adhikari A; Cho SH; Kim KY; Lee T; Reponen T J Environ Monit; 2007 Aug; 9(8):855-61. PubMed ID: 17671667 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Jensen PA; Todd WF; Davis GN; Scarpino PV Am Ind Hyg Assoc J; 1992 Oct; 53(10):660-7. PubMed ID: 1456208 [TBL] [Abstract][Full Text] [Related]
20. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Bałazy A; Toivola M; Adhikari A; Sivasubramani SK; Reponen T; Grinshpun SA Am J Infect Control; 2006 Mar; 34(2):51-7. PubMed ID: 16490606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]