BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16313939)

  • 1. Modelling nitrification, heterotrophic growth and predation in activated sludge.
    Moussa MS; Hooijmans CM; Lubberding HJ; Gijzen HJ; van Loosdrecht MC
    Water Res; 2005 Dec; 39(20):5080-98. PubMed ID: 16313939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based analysis on growth of activated sludge in a sequencing batch reactor.
    Ni BJ; Yu HQ
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):723-31. PubMed ID: 17899069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation on the impacts of predators on biomass components and oxygen uptake in sequencing batch reactor and continuous systems.
    Ni BJ; Rittmann BE; Yu HQ
    Water Res; 2010 Aug; 44(15):4616-22. PubMed ID: 20599242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules.
    Ni BJ; Yu HQ; Sun YJ
    Water Res; 2008 Mar; 42(6-7):1583-94. PubMed ID: 18048078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of predation and ORP conditions on the performance of nitrifiers in activated sludge systems.
    Lee Y; Oleszkiewicz JA
    Water Res; 2003 Oct; 37(17):4202-10. PubMed ID: 12946902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors.
    Datta T; Liu Y; Goel R
    Chemosphere; 2009 Jul; 76(5):697-705. PubMed ID: 19409599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling predation processes in activated sludge.
    Ni BJ; Rittmann BE; Yu HQ
    Biotechnol Bioeng; 2010 Apr; 105(6):1021-30. PubMed ID: 19998283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.
    Sin G; Guisasola A; De Pauw DJ; Baeza JA; Carrera J; Vanrolleghem PA
    Biotechnol Bioeng; 2005 Dec; 92(5):600-13. PubMed ID: 16240437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth, maintenance and product formation of autotrophs in activated sludge: taking the nitrite-oxidizing bacteria as an example.
    Ni BJ; Fang F; Xie WM; Yu HQ
    Water Res; 2008 Oct; 42(16):4261-70. PubMed ID: 18771791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.
    Sen D; Randall CW
    Water Environ Res; 2008 May; 80(5):439-53. PubMed ID: 18605383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative kinetic behavior of nitrifiers with different growth environments.
    Jih CG; Huang JS; Lin HJ; Chou HH
    Bioresour Technol; 2008 Jun; 99(9):3484-90. PubMed ID: 17826987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based evaluation of a new upgrading concept for N-removal.
    Salem S; Berends D; Heijnen JJ; van Loosdrecht MC
    Water Sci Technol; 2002; 45(6):169-76. PubMed ID: 11989870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the microbiology of activated sludge upon the addition of iron salts with or without nitrite or nitrate.
    Philips S; Verstraete W
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(1):35-50. PubMed ID: 12491968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic model of a granular sludge SBR: influences on nutrient removal.
    de Kreuk MK; Picioreanu C; Hosseini M; Xavier JB; van Loosdrecht MC
    Biotechnol Bioeng; 2007 Jul; 97(4):801-15. PubMed ID: 17177197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane bioreactor versus conventional activated sludge system: population dynamics of nitrifiers.
    Manser R; Gujer W; Siegrist H
    Water Sci Technol; 2005; 52(10-11):417-25. PubMed ID: 16459817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model for sizing combined nitrification and pre-denitrification activated sludge systems.
    Esposito G; Fabbricino M; Lens P; Pirozzi F
    Environ Technol; 2007 Apr; 28(4):391-9. PubMed ID: 17500314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrification in activated sludge batch reactors is linked to protozoan grazing of the bacterial population.
    Petropoulos P; Gilbride KA
    Can J Microbiol; 2005 Sep; 51(9):791-9. PubMed ID: 16391659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor.
    Ochoa JC; Colprin J; Palacios B; Paul E; Chatellier P
    Water Sci Technol; 2002; 46(1-2):397-404. PubMed ID: 12216657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective sludge discharge as the determining factor in SBR aerobic granulation: numerical modelling and experimental verification.
    Li AJ; Li XY
    Water Res; 2009 Aug; 43(14):3387-96. PubMed ID: 19505707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.