These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 16313993)
1. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Mizushima Y; Ikoma T; Tanaka J; Hoshi K; Ishihara T; Ogawa Y; Ueno A J Control Release; 2006 Jan; 110(2):260-265. PubMed ID: 16313993 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyapatite particles as a controlled release carrier of protein. Matsumoto T; Okazaki M; Inoue M; Yamaguchi S; Kusunose T; Toyonaga T; Hamada Y; Takahashi J Biomaterials; 2004 Aug; 25(17):3807-12. PubMed ID: 15020156 [TBL] [Abstract][Full Text] [Related]
3. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Zhong Q; Li W; Su X; Li G; Zhou Y; Kundu SC; Yao J; Cai Y Colloids Surf B Biointerfaces; 2016 Jul; 143():56-63. PubMed ID: 26998866 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J Chemistry; 2013 Apr; 19(17):5332-41. PubMed ID: 23460360 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Hydroxyapatite Nanofiber via Electrospinning as a Carrier for Protein. Zhang C; Li H; Guo Z; Xue B; Zhou C J Nanosci Nanotechnol; 2017 Feb; 17(2):1018-024. PubMed ID: 29671979 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the protein-loading capacity of hydroxyapatite by mercaptosuccinic acid modification. Ishihara S; Matsumoto T; Onoki T; Uddin MH; Sohmura T; Nakahira A Acta Biomater; 2010 Mar; 6(3):830-5. PubMed ID: 19836474 [TBL] [Abstract][Full Text] [Related]
7. Local administration and enhanced release of bone metabolic antibodies from hydroxyapatite/chondroitin sulfate nanocomposite microparticles using zinc cations. Watanabe H; Ikoma T; Sotome S; Okawa A J Mater Chem B; 2021 Jan; 9(3):757-766. PubMed ID: 33325979 [TBL] [Abstract][Full Text] [Related]
8. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies. Abinaya Sindu P; Kolanthai E; Suganthi RV; Thanigai Arul K; Manikandan E; Catalani LH; Narayana Kalkura S J Photochem Photobiol B; 2017 Oct; 175():163-172. PubMed ID: 28888169 [TBL] [Abstract][Full Text] [Related]
9. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
10. The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants. Slósarczyk A; Szymura-Oleksiak J; Mycek B Biomaterials; 2000 Jun; 21(12):1215-21. PubMed ID: 10811303 [TBL] [Abstract][Full Text] [Related]
11. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7.10H2O addition. Lin FH; Liao CJ; Chen KS; Sun JS Biomaterials; 1999 Mar; 20(5):475-84. PubMed ID: 10204990 [TBL] [Abstract][Full Text] [Related]
12. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering. Chen JD; Wang Y; Chen X J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen. Safi S; Karimzadeh F; Labbaf S Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():712-719. PubMed ID: 30184799 [TBL] [Abstract][Full Text] [Related]
14. pH-responsive controlled-release system based on mesoporous bioglass materials capped with mineralized hydroxyapatite. Yang C; Guo W; Cui L; Xiang D; Cai K; Lin H; Qu F Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():237-43. PubMed ID: 24433909 [TBL] [Abstract][Full Text] [Related]
16. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance. Ji Y; Wang A; Wu G; Yin H; Liu S; Chen B; Liu F; Li X Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():14-23. PubMed ID: 26354235 [TBL] [Abstract][Full Text] [Related]
18. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery. Zhao XY; Zhu YJ; Qi C; Chen F; Lu BQ; Zhao J; Wu J Chem Asian J; 2013 Jun; 8(6):1313-20. PubMed ID: 23554329 [TBL] [Abstract][Full Text] [Related]
19. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold. Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties. Kashiwazaki H; Kishiya Y; Matsuda A; Yamaguchi K; Iizuka T; Tanaka J; Inoue N Biomed Mater Eng; 2009; 19(2-3):133-40. PubMed ID: 19581706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]