BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16314322)

  • 1. Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation.
    Sari L; Andricioaei I
    Nucleic Acids Res; 2005; 33(20):6621-34. PubMed ID: 16314322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy calculations reveal rotating-ratchet mechanism for DNA supercoil relaxation by topoisomerase IB and its inhibition.
    Wereszczynski J; Andricioaei I
    Biophys J; 2010 Aug; 99(3):869-78. PubMed ID: 20682265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal.
    Frøhlich RF; Veigaard C; Andersen FF; McClendon AK; Gentry AC; Andersen AH; Osheroff N; Stevnsner T; Knudsen BR
    Nucleic Acids Res; 2007; 35(18):6170-80. PubMed ID: 17827209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB.
    Koster DA; Croquette V; Dekker C; Shuman S; Dekker NH
    Nature; 2005 Mar; 434(7033):671-4. PubMed ID: 15800630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective.
    Koster DA; Crut A; Shuman S; Bjornsti MA; Dekker NH
    Cell; 2010 Aug; 142(4):519-30. PubMed ID: 20723754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights from simulations into the mechanism of human topoisomerase I: explanation for a seeming controversy in experiments.
    Ucuncuoglu N; Andricioaei I; Sari L
    J Mol Graph Model; 2013 Jul; 44():286-96. PubMed ID: 23933704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation.
    Stivers JT; Harris TK; Mildvan AS
    Biochemistry; 1997 Apr; 36(17):5212-22. PubMed ID: 9136883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I.
    Tan K; Zhou Q; Cheng B; Zhang Z; Joachimiak A; Tse-Dinh YC
    Nucleic Acids Res; 2015 Dec; 43(22):11031-46. PubMed ID: 26490962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes that push DNA around.
    Keck JL; Berger JM
    Nat Struct Biol; 1999 Oct; 6(10):900-2. PubMed ID: 10504717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiscale dynamic model of DNA supercoil relaxation by topoisomerase IB.
    Lillian TD; Taranova M; Wereszczynski J; Andricioaei I; Perkins NC
    Biophys J; 2011 Apr; 100(8):2016-23. PubMed ID: 21504738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [DNA supercoiling and topoisomerases in Escherichia coli].
    Gómez-Eichelmann MC; Camacho-Carranza R
    Rev Latinoam Microbiol; 1995; 37(3):291-304. PubMed ID: 8850348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles.
    Anderson BG; Stivers JT
    Biochemistry; 2014 Jul; 53(26):4302-15. PubMed ID: 24945825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic clutch governs religation by type IB topoisomerases and determines camptothecin sensitivity.
    Seol Y; Zhang H; Pommier Y; Neuman KC
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16125-30. PubMed ID: 22991469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the function of type IB topoisomerases.
    Redinbo MR; Champoux JJ; Hol WG
    Curr Opin Struct Biol; 1999 Feb; 9(1):29-36. PubMed ID: 10047584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of flexibility and long range communication on the function of human topoisomerase I.
    Chillemi G; Fiorani P; Bruselles A; Castelli S; Campagna A; Sarra O; Tesauro C; Fiorentini M; Vassallo O; D'Annessa I; Santoleri S; Desideri A
    Ital J Biochem; 2007 Jun; 56(2):110-4. PubMed ID: 17722651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P; Bickle TA
    J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type IA topoisomerase catalytic cycle: A normal mode analysis and molecular dynamics simulation.
    Xiong B; Burk DL; Shen J; Luo X; Liu H; Shen J; Berghuis AM
    Proteins; 2008 Jun; 71(4):1984-94. PubMed ID: 18186484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.