BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16315106)

  • 1. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites.
    Ersfeld K; Barraclough H; Gull K
    J Mol Evol; 2005 Dec; 61(6):742-57. PubMed ID: 16315106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and cellular localisation of calpain-like proteins in Trypanosoma brucei.
    Liu W; Apagyi K; McLeavy L; Ersfeld K
    Mol Biochem Parasitol; 2010 Jan; 169(1):20-6. PubMed ID: 19766148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major.
    Kramer S; Kimblin NC; Carrington M
    BMC Genomics; 2010 May; 11():283. PubMed ID: 20444260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-binding domain proteins in Kinetoplastids: a comparative analysis.
    De Gaudenzi J; Frasch AC; Clayton C
    Eukaryot Cell; 2005 Dec; 4(12):2106-14. PubMed ID: 16339728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The repetitive cytoskeletal protein H49 of Trypanosoma cruzi is a calpain-like protein located at the flagellum attachment zone.
    Galetović A; Souza RT; Santos MR; Cordero EM; Bastos IM; Santana JM; Ruiz JC; Lima FM; Marini MM; Mortara RA; da Silveira JF
    PLoS One; 2011; 6(11):e27634. PubMed ID: 22096606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements.
    Bringaud F; Ghedin E; Blandin G; Bartholomeu DC; Caler E; Levin MJ; Baltz T; El-Sayed NM
    Mol Biochem Parasitol; 2006 Feb; 145(2):158-70. PubMed ID: 16257065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tale of three genomes: the kinetoplastids have arrived.
    Kissinger JC
    Trends Parasitol; 2006 Jun; 22(6):240-3. PubMed ID: 16635586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of editosome proteins in trypanosomatids.
    Worthey EA; Schnaufer A; Mian IS; Stuart K; Salavati R
    Nucleic Acids Res; 2003 Nov; 31(22):6392-408. PubMed ID: 14602897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evolutionary analysis of trypanosomatid GP63 proteases.
    Ma L; Chen K; Meng Q; Liu Q; Tang P; Hu S; Yu J
    Parasitol Res; 2011 Oct; 109(4):1075-84. PubMed ID: 21503641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution.
    Dear N; Matena K; Vingron M; Boehm T
    Genomics; 1997 Oct; 45(1):175-84. PubMed ID: 9339374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania.
    Mills E; Price HP; Johner A; Emerson JE; Smith DF
    Mol Biochem Parasitol; 2007 Mar; 152(1):22-34. PubMed ID: 17169445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei.
    Bringaud F; Biteau N; Melville SE; Hez S; El-Sayed NM; Leech V; Berriman M; Hall N; Donelson JE; Baltz T
    Eukaryot Cell; 2002 Feb; 1(1):137-51. PubMed ID: 12455980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strand asymmetry patterns in trypanosomatid parasites.
    Nilsson D; Andersson B
    Exp Parasitol; 2005 Mar; 109(3):143-9. PubMed ID: 15713445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative codon and amino acid composition analysis of Tritryps-conspicuous features of Leishmania major.
    Chanda I; Pan A; Saha SK; Dutta C
    FEBS Lett; 2007 Dec; 581(30):5751-8. PubMed ID: 18037385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of amino acid transporter loci in trypanosomatid parasites.
    Jackson AP
    BMC Evol Biol; 2007 Feb; 7():26. PubMed ID: 17319943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites.
    Padilla-Mejía NE; Florencio-Martínez LE; Figueroa-Angulo EE; Manning-Cela RG; Hernández-Rivas R; Myler PJ; Martínez-Calvillo S
    BMC Genomics; 2009 May; 10():232. PubMed ID: 19450263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei.
    Hertz-Fowler C; Ersfeld K; Gull K
    Mol Biochem Parasitol; 2001 Aug; 116(1):25-34. PubMed ID: 11463463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signalling the genome: the Ras-like small GTPase family of trypanosomatids.
    Field MC
    Trends Parasitol; 2005 Oct; 21(10):447-50. PubMed ID: 16112905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.