BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 16315255)

  • 1. Epigenetic inactivation of the CIP/KIP cell-cycle control pathway in acute leukemias.
    Chim CS; Wong AS; Kwong YL
    Am J Hematol; 2005 Dec; 80(4):282-7. PubMed ID: 16315255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between epigenetic changes in Wnt antagonists and acute leukemia.
    Zhou HR; Fu HY; Wu DS; Zhang YY; Huang SH; Chen CJ; Yan JG; Huang JL; Shen JZ
    Oncol Rep; 2017 May; 37(5):2663-2671. PubMed ID: 28440495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAMTSL5 and CDH11: putative epigenetic markers for therapeutic resistance in acute lymphoblastic leukemia.
    Abdullah M; Choo CW; Alias H; Abdul Rahman EJ; Mohd Ibrahim H; Jamal R; Hussin NH
    Hematology; 2017 Aug; 22(7):386-391. PubMed ID: 28292214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Promoter methylation and expression of death-associated protein kinase gene in acute leukemia].
    Zhao WH; Meng FY; Lai YR; Peng ZG; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 Mar; 37(3):407-410. PubMed ID: 28377362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of DNA methylation on ABO gene expression in leukemia].
    Shao M; Lyu XP; Yang QK; Zhu WT; Song J; Kong YK; Wang J; Sun L; Wang F
    Zhonghua Xue Ye Xue Za Zhi; 2016 Sep; 37(9):795-799. PubMed ID: 27719724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia.
    Rahmani M; Talebi M; Hagh MF; Feizi AAH; Solali S
    Biomed Pharmacother; 2018 Jan; 97():1493-1500. PubMed ID: 29793312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing DNA methylation-based prognostic biomarkers of acute myeloid leukemia.
    Gao C; Zhuang J; Zhou C; Liu L; Liu C; Li H; Zhao M; Liu G; Sun C
    J Cell Biochem; 2018 Dec; 119(12):10041-10050. PubMed ID: 30171717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant Methylation of APAF-1 Gene in Acute Myeloid Leukemia Patients.
    Rostami S; Nadali F; Alibakhshi R; Zaker F; Nasiri N; Payandeh M; Chahardouli B; Maleki A
    Int J Hematol Oncol Stem Cell Res; 2017 Jul; 11(3):225-230. PubMed ID: 28989589
    [No Abstract]   [Full Text] [Related]  

  • 9. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling.
    Bock J; Mochmann LH; Schlee C; Farhadi-Sartangi N; Göllner S; Müller-Tidow C; Baldus CD
    PLoS One; 2013; 8(1):e52872. PubMed ID: 23300998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter methylation might shift the balance of Galectin-3 & 12 expression in
    Assem M; El-Araby RE; Al-Karmalawy AA; Nabil R; Kamal MAM; Belal A; Ghamry HI; Abourehab MAS; Ghoneim MM; Alshahrani MY; El Leithy AA
    Front Genet; 2023; 14():1122864. PubMed ID: 36861129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia.
    Nopora A; Weidle UH
    Cancer Genomics Proteomics; 2024; 21(2):118-136. PubMed ID: 38423599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 5-aza-2'-deoxycytidine on
    Sanaei M; Kavoosi F; Nasiri S
    Galen Med J; 2020; 9():e1899. PubMed ID: 34466608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 5-Aza-2'-Deoxycytidine in Comparison to Valproic Acid and Trichostatin A on Histone Deacetylase 1, DNA Methyltransferase 1, and CIP/KIP Family (p21, p27, and p57) Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Colon Cancer SW480 Cell Line.
    Sanaei M; Kavoosi F
    Adv Biomed Res; 2019; 8():52. PubMed ID: 31516890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haploinsufficiency of ETV6 and CDKN1B in patients with acute myeloid leukemia and complex karyotype.
    Feurstein S; Rücker FG; Bullinger L; Hofmann W; Manukjan G; Göhring G; Lehmann U; Heuser M; Ganser A; Döhner K; Schlegelberger B; Steinemann D
    BMC Genomics; 2014 Sep; 15(1):784. PubMed ID: 25213837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches.
    Hatlen MA; Wang L; Nimer SD
    Front Med; 2012 Sep; 6(3):248-62. PubMed ID: 22875638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-negative myeloproliferative neoplasms.
    Chim CS; Wan TS; Wong KY; Fung TK; Drexler HG; Wong KF
    J Transl Med; 2011 Nov; 9():197. PubMed ID: 22082000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia.
    Davies C; Hogarth LA; Dietrich PA; Bachmann PS; Mackenzie KL; Hall AG; Lock RB
    J Biol Chem; 2011 Oct; 286(43):37639-50. PubMed ID: 21903579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies.
    Chim CS; Wong KY; Leung CY; Chung LP; Hui PK; Chan SY; Yu L
    J Cell Mol Med; 2011 Dec; 15(12):2760-7. PubMed ID: 21323860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of p16 in the pathogenesis of Langerhans cell histiocytosis.
    Kim SY; Kim HJ; Kim HJ; Park MR; Koh KN; Im HJ; Lee CH; Seo JJ
    Korean J Hematol; 2010 Dec; 45(4):247-52. PubMed ID: 21253426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of p16 on glucocorticoid response in a B-cell lymphoblast cell line.
    Kim SY; Lee KY; Jeong DC; Kim HK
    Korean J Pediatr; 2010 Jul; 53(7):753-8. PubMed ID: 21189951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.