These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 16315597)
1. Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping. Liu R; Zhao J; Xiao Y; Meng J Sci China C Life Sci; 2005 Oct; 48(5):460-70. PubMed ID: 16315597 [TBL] [Abstract][Full Text] [Related]
2. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. Wu J; Cai G; Tu J; Li L; Liu S; Luo X; Zhou L; Fan C; Zhou Y PLoS One; 2013; 8(7):e67740. PubMed ID: 23844081 [TBL] [Abstract][Full Text] [Related]
3. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
4. MYB43 in Oilseed Rape ( Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973 [No Abstract] [Full Text] [Related]
5. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Zhao J; Wang J; An L; Doerge RW; Chen ZJ; Grau CR; Meng J; Osborn TC Planta; 2007 Dec; 227(1):13-24. PubMed ID: 17665211 [TBL] [Abstract][Full Text] [Related]
6. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
9. Glutamate Receptor-like (GLR) Family in Gulzar RMA; Ren CX; Fang X; Xu YP; Saand MA; Cai XZ Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891858 [TBL] [Abstract][Full Text] [Related]
10. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum. Bergmann T; Menkhaus J; Ye W; Schemmel M; Hasler M; Rietz S; Leckband G; Cai D Theor Appl Genet; 2023 Mar; 136(4):86. PubMed ID: 36966424 [TBL] [Abstract][Full Text] [Related]
11. Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. Cai G; Yang Q; Yang Q; Zhao Z; Chen H; Wu J; Fan C; Zhou Y BMC Genet; 2012 Dec; 13():105. PubMed ID: 23216693 [TBL] [Abstract][Full Text] [Related]
12. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
13. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related]
14. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
15. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
16. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. Zhang F; Huang J; Tang M; Cheng X; Liu Y; Tong C; Yu J; Sadia T; Dong C; Liu L; Tang B; Chen J; Liu S J Integr Plant Biol; 2019 Jan; 61(1):75-88. PubMed ID: 30506639 [TBL] [Abstract][Full Text] [Related]
17. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Ding LN; Li M; Guo XJ; Tang MQ; Cao J; Wang Z; Liu R; Zhu KM; Guo L; Liu SY; Tan XL Plant Biotechnol J; 2020 May; 18(5):1255-1270. PubMed ID: 31693306 [TBL] [Abstract][Full Text] [Related]
18. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Zhao J; Buchwaldt L; Rimmer SR; Sharpe A; McGregor L; Bekkaoui D; Hegedus D Mol Plant Pathol; 2009 Sep; 10(5):635-49. PubMed ID: 19694954 [TBL] [Abstract][Full Text] [Related]