BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16316347)

  • 1. Constriction velocities of renal afferent and efferent arterioles of mice are not related to SMB expression.
    Patzak A; Petzhold D; Wronski T; Martinka P; Babu GJ; Periasamy M; Haase H; Morano I
    Kidney Int; 2005 Dec; 68(6):2726-34. PubMed ID: 16316347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin heavy chain expression in renal afferent and efferent arterioles: relationship to contractile kinetics and function.
    Shiraishi M; Wang X; Walsh MP; Kargacin G; Loutzenhiser K; Loutzenhiser R
    FASEB J; 2003 Dec; 17(15):2284-6. PubMed ID: 14563688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular smooth muscle function of renal glomerular and interlobar arteries predicts renal damage in rats.
    Vavrinec P; Henning RH; Goris M; Vavrincova-Yaghi D; Buikema H; van Dokkum RP
    Am J Physiol Renal Physiol; 2012 Oct; 303(8):F1187-95. PubMed ID: 22791345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II sensitivity of afferent glomerular arterioles in endothelin-1 transgenic mice.
    Patzak A; Bontscho J; Lai E; Kupsch E; Skalweit A; Richter CM; Zimmermann M; Thöne-Reineke C; Joehren O; Godes M; Steege A; Hocher B
    Nephrol Dial Transplant; 2005 Dec; 20(12):2681-9. PubMed ID: 16188896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles.
    Poulsen CB; Al-Mashhadi RH; Cribbs LL; Skøtt O; Hansen PB
    Kidney Int; 2011 Feb; 79(4):443-51. PubMed ID: 21068717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
    Takenaka T; Suzuki H; Okada H; Inoue T; Kanno Y; Ozawa Y; Hayashi K; Saruta T
    Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation.
    Chen J; Fleming JT
    Kidney Int; 1993 Oct; 44(4):684-91. PubMed ID: 8258945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inward rectifier K(+) currents and Kir2.1 expression in renal afferent and efferent arterioles.
    Chilton L; Loutzenhiser K; Morales E; Breaks J; Kargacin GJ; Loutzenhiser R
    J Am Soc Nephrol; 2008 Jan; 19(1):69-76. PubMed ID: 18178799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired myogenic constriction of the renal afferent arteriole in a mouse model of reduced βENaC expression.
    Ge Y; Gannon K; Gousset M; Liu R; Murphey B; Drummond HA
    Am J Physiol Renal Physiol; 2012 Jun; 302(11):F1486-93. PubMed ID: 22419697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of h1-calponin ablation on the contractile properties of bladder versus vascular smooth muscle in mice lacking SM-B myosin.
    Babu GJ; Celia G; Rhee AY; Yamamura H; Takahashi K; Brozovich FV; Osol G; Periasamy M
    J Physiol; 2006 Dec; 577(Pt 3):1033-42. PubMed ID: 16973711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell calcium concentration in glomerular afferent and efferent arterioles under the action of noradrenaline and angiotensin II.
    Kornfeld M; Gutierrez AM; Gonzalez E; Salomonsson M; Persson AE
    Acta Physiol Scand; 1994 May; 151(1):99-105. PubMed ID: 8048340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression.
    Kimura K; Nagai R; Sakai T; Aikawa M; Kuro-o M; Kobayashi N; Shirato I; Inagami T; Oshi M; Suzuki N
    Kidney Int; 1995 Aug; 48(2):372-82. PubMed ID: 7564104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile properties of afferent and efferent arterioles.
    Ito S; Abe K
    Clin Exp Pharmacol Physiol; 1997 Jul; 24(7):532-5. PubMed ID: 9248673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo.
    Thuesen AD; Andersen H; Cardel M; Toft A; Walter S; Marcussen N; Jensen BL; Bie P; Hansen PB
    Am J Physiol Renal Physiol; 2014 Aug; 307(4):F445-52. PubMed ID: 24966091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the number of angiotensin II AT1 receptors in rat kidney afferent and efferent arterioles.
    Razga Z; Nyengaard JR
    Anal Quant Cytol Histol; 2007 Aug; 29(4):208-16. PubMed ID: 17879628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compromised renal microvascular reactivity of angiotensin type 1 double null mice.
    Park S; Bivona BJ; Harrison-Bernard LM
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F60-7. PubMed ID: 17409281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.