These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 16316857)
1. Development and mathematical simulation of theophylline pulsatile release tablets. Zhu Y; Zheng L Drug Dev Ind Pharm; 2005 Dec; 31(10):1009-17. PubMed ID: 16316857 [TBL] [Abstract][Full Text] [Related]
2. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
3. Development of pulsatile multiparticulate drug delivery system coated with aqueous dispersion Aquacoat ECD. Mohamad A; Dashevsky A Int J Pharm; 2006 Aug; 318(1-2):124-31. PubMed ID: 16759827 [TBL] [Abstract][Full Text] [Related]
4. Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs--Part II theophylline and cimetidine. Cantor SL; Hoag SW; Augsburger LL Drug Dev Ind Pharm; 2009 May; 35(5):568-82. PubMed ID: 18979306 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate. Hauschild K; Picker-Freyer KM Pharm Dev Technol; 2006 Feb; 11(1):125-40. PubMed ID: 16544916 [TBL] [Abstract][Full Text] [Related]
6. Film-coated matrix mini-tablets for the extended release of a water-soluble drug. Mohamed FA; Roberts M; Seton L; Ford JL; Levina M; Rajabi-Siahboomi AR Drug Dev Ind Pharm; 2015 Apr; 41(4):623-30. PubMed ID: 24564797 [TBL] [Abstract][Full Text] [Related]
7. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials. El-Maradny HA Drug Deliv; 2007 Nov; 14(8):539-46. PubMed ID: 18027184 [TBL] [Abstract][Full Text] [Related]
8. Development of pulsatile release tablets with swelling and rupturable layers. Sungthongjeen S; Puttipipatkhachorn S; Paeratakul O; Dashevsky A; Bodmeier R J Control Release; 2004 Mar; 95(2):147-59. PubMed ID: 14980764 [TBL] [Abstract][Full Text] [Related]
9. Release characteristics and in vitro-in vivo correlation of pulsatile pattern for a pulsatile drug delivery system activated by membrane rupture via osmotic pressure and swelling. Lin HL; Lin SY; Lin YK; Ho HO; Lo YW; Sheu MT Eur J Pharm Biopharm; 2008 Sep; 70(1):289-301. PubMed ID: 18539015 [TBL] [Abstract][Full Text] [Related]
10. Development of enteric-coated pectin-based matrix tablets for colonic delivery of theophylline. Mura P; Maestrelli F; Cirri M; González Rodríguez ML; Rabasco Alvarez AM J Drug Target; 2003 Jul; 11(6):365-71. PubMed ID: 14668057 [TBL] [Abstract][Full Text] [Related]
11. [Theophylline release and diffusion from a compressed ethylcellulose matrix through an artificial membrane]. Noureddine N; Douki W; Chaumeil JC; Sfar S Ann Pharm Fr; 2004 Sep; 62(5):343-7. PubMed ID: 15314582 [TBL] [Abstract][Full Text] [Related]
12. The effect of ethylcellulose molecular weight on the properties of theophylline microspheres. Dashevsky A; Zessin G J Microencapsul; 1997; 14(3):273-80. PubMed ID: 9147278 [TBL] [Abstract][Full Text] [Related]
13. Excipient-excipient interaction in the design of sustained-release theophylline tablets: in vitro and in vivo evaluation. Bayomi MA; Al-Suwayeh SA; El-Helw AR Drug Dev Ind Pharm; 2001 Jul; 27(6):499-506. PubMed ID: 11548856 [TBL] [Abstract][Full Text] [Related]
14. Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline. Emeje M; John-Africa L; Isimi Y; Kunle O; Ofoefule S Acta Pharm; 2012 Mar; 62(1):71-82. PubMed ID: 22472450 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the swelling, hydration and rupturing properties of the swelling layer of a rupturable pulsatile drug delivery system. Bussemer T; Peppas NA; Bodmeier R Eur J Pharm Biopharm; 2003 Sep; 56(2):261-70. PubMed ID: 12957641 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the properties of ethylcellulose-cellulose triacetate microcapsules containing theophylline prepared by different microencapsulation techniques. Wu JC; Jean WJ; Chen H J Microencapsul; 1994; 11(5):507-18. PubMed ID: 7815268 [TBL] [Abstract][Full Text] [Related]
17. Impact of formulation and process variables on solid-state stability of theophylline in controlled release formulations. Korang-Yeboah M; Rahman Z; Shah D; Mohammad A; Wu S; Siddiqui A; Khan MA Int J Pharm; 2016 Feb; 499(1-2):20-28. PubMed ID: 26688036 [TBL] [Abstract][Full Text] [Related]
18. Formulation parameters affecting the performance of coated gelatin capsules with pulsatile release profiles. Bussemer T; Bodmeier R Int J Pharm; 2003 Nov; 267(1-2):59-68. PubMed ID: 14602384 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of different fast melting disintegrants by means of a central composite design. Di Martino P; Martelli S; Wehrlé P Drug Dev Ind Pharm; 2005 Jan; 31(1):109-21. PubMed ID: 15704862 [TBL] [Abstract][Full Text] [Related]
20. Formulation and evaluation of a pulsatile drug delivery system using time- and pH-dependant polymers. Kadam VD; Gattani SG Pharm Dev Technol; 2010; 15(1):57-63. PubMed ID: 19552544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]