These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16317041)

  • 1. Root responses to soil physical conditions; growth dynamics from field to cell.
    Bengough AG; Bransby MF; Hans J; McKenna SJ; Roberts TJ; Valentine TA
    J Exp Bot; 2006; 57(2):437-47. PubMed ID: 16317041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.
    Nakielski J; Lipowczan M
    PLoS One; 2013; 8(12):e84337. PubMed ID: 24367654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to determine the displacement velocity field in the apical region of the Arabidopsis root.
    Nakielski J; Lipowczan M
    Planta; 2012 Nov; 236(5):1547-57. PubMed ID: 22828709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root cap removal increases root penetration resistance in maize (Zea mays L).
    Iijima M; Higuchi T; Barlow PW; Bengough AG
    J Exp Bot; 2003 Sep; 54(390):2105-9. PubMed ID: 12885860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.
    Bengough AG; McKenzie BM; Hallett PD; Valentine TA
    J Exp Bot; 2011 Jan; 62(1):59-68. PubMed ID: 21118824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth dynamics of mechanically impeded lupin roots: does altered morphology induce hypoxia?
    Hanbury CD; Atwell BJ
    Ann Bot; 2005 Oct; 96(5):913-24. PubMed ID: 16109735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand.
    Iijima M; Griffiths B; Bengough AG
    New Phytol; 2000 Mar; 145(3):477-482. PubMed ID: 33862902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy.
    Wuyts N; Bengough AG; Roberts TJ; Du C; Bransby MF; McKenna SJ; Valentine TA
    Planta; 2011 Oct; 234(4):769-84. PubMed ID: 21630041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces.
    Bizet F; Bengough AG; Hummel I; Bogeat-Triboulot MB; Dupuy LX
    J Exp Bot; 2016 Oct; 67(19):5605-5614. PubMed ID: 27664958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana.
    Yang X; Dong G; Palaniappan K; Mi G; Baskin TI
    Plant Cell Environ; 2017 Feb; 40(2):264-276. PubMed ID: 27813107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branching out in new directions: the control of root architecture by lateral root formation.
    Nibau C; Gibbs DJ; Coates JC
    New Phytol; 2008; 179(3):595-614. PubMed ID: 18452506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A root penetration model of Arabidopsis thaliana in phytagel medium with different strength.
    Yan J; Wang B; Zhou Y
    J Plant Res; 2017 Sep; 130(5):941-950. PubMed ID: 28315970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation.
    Lombardi F; Scippa GS; Lasserre B; Montagnoli A; Tognetti R; Marchetti M; Chiatante D
    J Plant Res; 2017 May; 130(3):515-525. PubMed ID: 28299515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil penetration by maize roots is negatively related to ethylene-induced thickening.
    Vanhees DJ; Schneider HM; Sidhu JS; Loades KW; Bengough AG; Bennett MJ; Pandey BK; Brown KM; Mooney SJ; Lynch JP
    Plant Cell Environ; 2022 Mar; 45(3):789-804. PubMed ID: 34453329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system.
    Barrio RA; Romero-Arias JR; Noguez MA; Azpeitia E; Ortiz-Gutiérrez E; Hernández-Hernández V; Cortes-Poza Y; Álvarez-Buylla ER
    PLoS Comput Biol; 2013; 9(5):e1003026. PubMed ID: 23658505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological traits of a cellular pattern versus growth rate anisotropy in radish roots.
    Piekarska-Stachowiak A; Szymanowska-Pułka J; Potocka I; Lipowczan M
    Protoplasma; 2019 Jul; 256(4):1037-1049. PubMed ID: 30834467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do roots elongate in a structured soil?
    Jin K; Shen J; Ashton RW; Dodd IC; Parry MA; Whalley WR
    J Exp Bot; 2013 Nov; 64(15):4761-77. PubMed ID: 24043852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana.
    Vilches-Barro A; Maizel A
    Curr Opin Plant Biol; 2015 Feb; 23():31-8. PubMed ID: 25449724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root-Apex Proton Fluxes at the Centre of Soil-Stress Acclimation.
    Siao W; Coskun D; Baluška F; Kronzucker HJ; Xu W
    Trends Plant Sci; 2020 Aug; 25(8):794-804. PubMed ID: 32673580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.
    Chen KP
    J Theor Biol; 2016 May; 396():63-74. PubMed ID: 26920247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.