BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1039 related articles for article (PubMed ID: 16317238)

  • 21. A target-specific electrode and lead design for internal globus pallidus deep brain stimulation.
    Vasques X; Cif L; Mennessier G; Coubes P
    Stereotact Funct Neurosurg; 2010; 88(3):129-37. PubMed ID: 20357520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational analysis of deep brain stimulation.
    McIntyre CC; Miocinovic S; Butson CR
    Expert Rev Med Devices; 2007 Sep; 4(5):615-22. PubMed ID: 17850196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the current-density distribution from a tapered, gelled-pad external cardiac pacing electrode.
    Williams CR; Geddes LA; Bourland JD; Furgason ES
    Med Instrum; 1987 Dec; 21(6):329-34. PubMed ID: 3431497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.
    Miocinovic S; Parent M; Butson CR; Hahn PJ; Russo GS; Vitek JL; McIntyre CC
    J Neurophysiol; 2006 Sep; 96(3):1569-80. PubMed ID: 16738214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy.
    McClelland S; Ford B; Senatus PB; Winfield LM; Du YE; Pullman SL; Yu Q; Frucht SJ; McKhann GM; Goodman RR
    Neurosurg Focus; 2005 Nov; 19(5):E12. PubMed ID: 16398462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.
    Gabran SR; Saad JH; Salama MM; Mansour RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep brain stimulation hardware complications: the role of electrode impedance and current measurements.
    Farris S; Vitek J; Giroux ML
    Mov Disord; 2008 Apr; 23(5):755-60. PubMed ID: 18186117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT.
    Pinsker MO; Herzog J; Falk D; Volkmann J; Deuschl G; Mehdorn M
    Zentralbl Neurochir; 2008 Aug; 69(3):144-7. PubMed ID: 18666049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts.
    Fromherz P
    Eur Biophys J; 2002 Jun; 31(3):228-31. PubMed ID: 12029335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microelectrode recording-determined subthalamic nucleus length not predictive of stimulation-induced side effects.
    McClelland S; Kim B; Winfield LM; Ford B; Edwards TA; Pullman SL; Yu Q; McKhann GM; Goodman RR
    Neurosurg Focus; 2005 Nov; 19(5):E13. PubMed ID: 16398463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor.
    Hamel W; Herzog J; Kopper F; Pinsker M; Weinert D; Müller D; Krack P; Deuschl G; Mehdorn HM
    Acta Neurochir (Wien); 2007 Aug; 149(8):749-58; discussion 758. PubMed ID: 17660940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study.
    Aström M; Johansson JD; Hariz MI; Eriksson O; Wårdell K
    J Neural Eng; 2006 Jun; 3(2):132-8. PubMed ID: 16705269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact position analysis of deep brain stimulation electrodes on post-operative CT images.
    Hemm S; Coste J; Gabrillargues J; Ouchchane L; Sarry L; Caire F; Vassal F; Nuti C; Derost P; Durif F; Lemaire JJ
    Acta Neurochir (Wien); 2009 Jul; 151(7):823-9; discussion 829. PubMed ID: 19444372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.