These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 16318285)

  • 41. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [MADS-box proteins--combinatorial transcriptional regulators in fungi, animals and plants].
    Szafron Ł; Jagielski T; Dzikowska A
    Postepy Biochem; 2009; 55(1):54-65. PubMed ID: 19514466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Sundström JF; Nakayama N; Glimelius K; Irish VF
    Plant J; 2006 May; 46(4):593-600. PubMed ID: 16640596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.
    Kater MM; Dreni L; Colombo L
    J Exp Bot; 2006; 57(13):3433-44. PubMed ID: 16968881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.
    Alvarez-Buylla ER; García-Ponce B; Garay-Arroyo A
    J Exp Bot; 2006; 57(12):3099-107. PubMed ID: 16893974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular cloning and expression analysis of HAG1 in the floral organs of Hyacinthus orientalis L.
    Zhang X; Li Q; Li X; Bai S; Lu W
    Sci China C Life Sci; 2000 Aug; 43(4):395-401. PubMed ID: 18726343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MADS-box family genes in sheepgrass and their involvement in abiotic stress responses.
    Jia J; Zhao P; Cheng L; Yuan G; Yang W; Liu S; Chen S; Qi D; Liu G; Li X
    BMC Plant Biol; 2018 Mar; 18(1):42. PubMed ID: 29540194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cloning and Expression Analysis of Onion (Allium cepa L.) MADS-Box Genes and Regulation Mechanism of Cytoplasmic Male Sterility.
    Lou H; Huang Y; Zhu Z; Xu Q
    Biochem Genet; 2023 Oct; 61(5):2116-2134. PubMed ID: 36947296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fine Tuning Floral Morphology: MADS-Box Protein Complex Formation in Maize.
    Hughes PW
    Plant Cell; 2020 Nov; 32(11):3376-3377. PubMed ID: 33004615
    [No Abstract]   [Full Text] [Related]  

  • 51. Distribution of poly(A) RNA and splicing machinery elements in mature Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro.
    Zienkiewicz K; Smoliński DJ; Bednarska E
    Protoplasma; 2006 May; 227(2-4):95-103. PubMed ID: 16736251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell Layer-Specific Accumulation of Anthocyanins in Response to Gibberellic Acid in Tepals of Hyacinthus orientalis.
    Hosokawa K
    Biosci Biotechnol Biochem; 1999; 63(5):930-1. PubMed ID: 27385573
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of essential oils by flowers of Hyacinthus orientalis L. regenerated in vitro.
    Hosokawa K; Fukunaga Y
    Plant Cell Rep; 1995 Jun; 14(9):575-9. PubMed ID: 24185600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Biological properties of agents of bacterial infection in Hyacinthus orientalis Z. and Calla Z].
    Kabashna LV
    Mikrobiol Zh; 1972; 34(1):113-4. PubMed ID: 5077228
    [No Abstract]   [Full Text] [Related]  

  • 55. Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro.
    Guan CM; Zhu SS; Li XG; Zhang XS
    Plant Cell Rep; 2006 Nov; 25(11):1133-7. PubMed ID: 16676184
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and expression analysis of a MADS box gene, HoMADS2, in Hyacinthus orientalis L.
    Su HY; Li QZ; Li XG; Zhang XS
    Yi Chuan Xue Bao; 2005 Nov; 32(11):1191-8. PubMed ID: 16318285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L.
    Li QZ; Li XG; Bai SN; Lu WL; Zhang XS
    Planta; 2002 Aug; 215(4):533-40. PubMed ID: 12172834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation.
    Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS
    DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning and characterization of a novel PI-like MADS-box gene in Phalaenopsis orchid.
    Guo B; Zhang T; Shi J; Chen D; Shen D; Ming F
    DNA Seq; 2008 Jun; 19(3):332-9. PubMed ID: 17852362
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary complexity of MADS complexes.
    Rijpkema AS; Gerats T; Vandenbussche M
    Curr Opin Plant Biol; 2007 Feb; 10(1):32-8. PubMed ID: 17140839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.