These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16318861)
41. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. Luchtman DW; Meng Q; Wang X; Shao D; Song C J Neurochem; 2013 Mar; 124(6):855-68. PubMed ID: 23106698 [TBL] [Abstract][Full Text] [Related]
42. MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. Lo CP; Hsu LJ; Li MY; Hsu SY; Chuang JI; Tsai MS; Lin SR; Chang NS; Chen ST Eur J Neurosci; 2008 Apr; 27(7):1634-46. PubMed ID: 18371080 [TBL] [Abstract][Full Text] [Related]
43. In vitro interaction of nonsteroidal anti-inflammatory drugs on oxidative phosphorylation of rat kidney mitochondria: respiration and ATP synthesis. Mingatto FE; Santos AC; Uyemura SA; Jordani MC; Curti C Arch Biochem Biophys; 1996 Oct; 334(2):303-8. PubMed ID: 8900405 [TBL] [Abstract][Full Text] [Related]
44. Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Sadek HA; Szweda PA; Szweda LI Biochemistry; 2004 Jul; 43(26):8494-502. PubMed ID: 15222760 [TBL] [Abstract][Full Text] [Related]
45. Non-steroidal anti-inflammatory agents, tolmetin and sulindac, attenuate oxidative stress in rat brain homogenate and reduce quinolinic acid-induced neurodegeneration in rat hippocampal neurons. Dairam A; Chetty P; Daya S Metab Brain Dis; 2006 Sep; 21(2-3):221-33. PubMed ID: 16850258 [TBL] [Abstract][Full Text] [Related]
46. [Superoxide formation and lipid peroxidation by the mitochondrial electron-transfer chain]. Takeshige K Rinsho Shinkeigaku; 1994 Dec; 34(12):1269-71. PubMed ID: 7774132 [TBL] [Abstract][Full Text] [Related]
47. Econazole attenuates cytotoxicity of 1-methyl-4-phenylpyridinium by suppressing mitochondrial membrane permeability transition. Lee CS; Yim SB; Song JH; Han ES Brain Res Bull; 2006 May; 69(6):687-94. PubMed ID: 16716839 [TBL] [Abstract][Full Text] [Related]
48. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Kalivendi SV; Kotamraju S; Cunningham S; Shang T; Hillard CJ; Kalyanaraman B Biochem J; 2003 Apr; 371(Pt 1):151-64. PubMed ID: 12523938 [TBL] [Abstract][Full Text] [Related]
49. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311 [TBL] [Abstract][Full Text] [Related]
50. Rat model of Parkinson's disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Yazdani U; German DC; Liang CL; Manzino L; Sonsalla PK; Zeevalk GD Exp Neurol; 2006 Jul; 200(1):172-83. PubMed ID: 16546169 [TBL] [Abstract][Full Text] [Related]
51. Alpha-synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells. Wu F; Poon WS; Lu G; Wang A; Meng H; Feng L; Li Z; Liu S Brain Res; 2009 Oct; 1292():173-9. PubMed ID: 19646423 [TBL] [Abstract][Full Text] [Related]
52. Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC12 cells. Lipman T; Tabakman R; Lazarovici P Eur J Pharmacol; 2006 Nov; 549(1-3):50-7. PubMed ID: 16989807 [TBL] [Abstract][Full Text] [Related]
53. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. Shang T; Kotamraju S; Kalivendi SV; Hillard CJ; Kalyanaraman B J Biol Chem; 2004 Apr; 279(18):19099-112. PubMed ID: 14752097 [TBL] [Abstract][Full Text] [Related]
54. Zocor Forte (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not. Santiago M; Hernández-Romero MC; Machado A; Cano J Eur J Pharmacol; 2009 May; 609(1-3):58-64. PubMed ID: 19292984 [TBL] [Abstract][Full Text] [Related]
55. A redox reaction between MPP+ and MPDP+ to produce superoxide radicals does not impair mitochondrial function. Walker MJ; Jenner P; Marsden CD Biochem Pharmacol; 1991 Jul; 42(4):913-9. PubMed ID: 1651082 [TBL] [Abstract][Full Text] [Related]
56. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases. Rodriguez-Rocha H; Garcia-Garcia A; Pickett C; Li S; Jones J; Chen H; Webb B; Choi J; Zhou Y; Zimmerman MC; Franco R Free Radic Biol Med; 2013 Aug; 61():370-83. PubMed ID: 23602909 [TBL] [Abstract][Full Text] [Related]
57. Allopurinol suppresses 2-bromoethylamine and 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical generation in rat striatum. Obata T Toxicology; 2006 Jan; 218(1):75-9. PubMed ID: 16271280 [TBL] [Abstract][Full Text] [Related]
59. Use of an electrode selective for 1-methyl-4-phenylpyridinium (MPP+) to measure its uptake and accumulation by mitochondria. Davey GP; Tipton KF; Murphy MP J Neural Transm Suppl; 1993; 40():47-55. PubMed ID: 8294900 [TBL] [Abstract][Full Text] [Related]
60. Copper reduces striatal protein nitration and tyrosine hydroxylase inactivation induced by MPP+ in rats. Rubio-Osornio M; Montes S; Pérez-Severiano F; Aguilera P; Floriano-Sánchez E; Monroy-Noyola A; Rubio C; Ríos C Neurochem Int; 2009 Jun; 54(7):447-51. PubMed ID: 19428787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]