These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 16319197)
1. The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. Faumont S; Lockery SR J Neurophysiol; 2006 Mar; 95(3):1976-81. PubMed ID: 16319197 [TBL] [Abstract][Full Text] [Related]
2. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Chronis N; Zimmer M; Bargmann CI Nat Methods; 2007 Sep; 4(9):727-31. PubMed ID: 17704783 [TBL] [Abstract][Full Text] [Related]
3. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. Simonetta SH; Golombek DA J Neurosci Methods; 2007 Apr; 161(2):273-80. PubMed ID: 17207862 [TBL] [Abstract][Full Text] [Related]
9. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Chokshi TV; Bazopoulou D; Chronis N Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480 [TBL] [Abstract][Full Text] [Related]
10. Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. Vyssotski AL; Serkov AN; Itskov PM; Dell'Omo G; Latanov AV; Wolfer DP; Lipp HP J Neurophysiol; 2006 Feb; 95(2):1263-73. PubMed ID: 16236777 [TBL] [Abstract][Full Text] [Related]
11. Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Mori I; Sasakura H; Kuhara A Curr Opin Neurobiol; 2007 Dec; 17(6):712-9. PubMed ID: 18242074 [TBL] [Abstract][Full Text] [Related]
12. A single sensory neuron directs both attractive and repulsive odor preferences. Mori I Neuron; 2008 Sep; 59(6):839-40. PubMed ID: 18817723 [TBL] [Abstract][Full Text] [Related]
13. Application of multiline two-photon microscopy to functional in vivo imaging. Kurtz R; Fricke M; Kalb J; Tinnefeld P; Sauer M J Neurosci Methods; 2006 Mar; 151(2):276-86. PubMed ID: 16442636 [TBL] [Abstract][Full Text] [Related]
14. Automated correction of fast motion artifacts for two-photon imaging of awake animals. Greenberg DS; Kerr JN J Neurosci Methods; 2009 Jan; 176(1):1-15. PubMed ID: 18789968 [TBL] [Abstract][Full Text] [Related]
15. Air-driven eye shutter system for vision experiments using awake behaving animals. Matsumoto M; Togawa M; Komatsu H J Neurosci Methods; 2006 May; 153(1):130-4. PubMed ID: 16316689 [TBL] [Abstract][Full Text] [Related]
16. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. Tsechpenakis G; Bianchi L; Metaxas D; Driscoll M IEEE Trans Biomed Eng; 2008 May; 55(5):1539-49. PubMed ID: 18440900 [TBL] [Abstract][Full Text] [Related]
17. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Nguyen JP; Shipley FB; Linder AN; Plummer GS; Liu M; Setru SU; Shaevitz JW; Leifer AM Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E1074-81. PubMed ID: 26712014 [TBL] [Abstract][Full Text] [Related]
18. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879 [TBL] [Abstract][Full Text] [Related]
19. Estimating locations of quantum-dot-encoded microparticles from ultra-high density 3-D microarrays. Sarder P; Nehorai A IEEE Trans Nanobioscience; 2008 Dec; 7(4):284-97. PubMed ID: 19203872 [TBL] [Abstract][Full Text] [Related]