These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16319203)

  • 1. Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1.
    Nickell WT; Kleene NK; Gesteland RC; Kleene SJ
    J Neurophysiol; 2006 Mar; 95(3):2003-6. PubMed ID: 16319203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.
    Nickell WT; Kleene NK; Kleene SJ
    J Physiol; 2007 Sep; 583(Pt 3):1005-20. PubMed ID: 17656441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice lacking NKCC1 have normal olfactory sensitivity.
    Smith DW; Thach S; Marshall EL; Mendoza MG; Kleene SJ
    Physiol Behav; 2008 Jan; 93(1-2):44-9. PubMed ID: 17719611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons.
    Reisert J; Lai J; Yau KW; Bradley J
    Neuron; 2005 Feb; 45(4):553-61. PubMed ID: 15721241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of chloride uptake in frog olfactory receptor neurons.
    Jaén C; Ozdener MH; Reisert J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Apr; 197(4):339-49. PubMed ID: 21253748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons.
    Haering C; Kanageswaran N; Bouvain P; Scholz P; Altmüller J; Becker C; Gisselmann G; Wäring-Bischof J; Hatt H
    J Biol Chem; 2015 Apr; 290(15):9767-79. PubMed ID: 25713142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride accumulation in mammalian olfactory sensory neurons.
    Kaneko H; Putzier I; Frings S; Kaupp UB; Gensch T
    J Neurosci; 2004 Sep; 24(36):7931-8. PubMed ID: 15356206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.
    Witte M; Reinert T; Dietz B; Nerlich J; Rübsamen R; Milenkovic I
    Neuroscience; 2014 Mar; 261():207-22. PubMed ID: 24388924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of a Ca(2+)-activated Cl(-) conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout.
    Sato K; Suzuki N
    J Exp Biol; 2000 Jan; 203(Pt 2):253-62. PubMed ID: 10607535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular components of signal amplification in olfactory sensory cilia.
    Hengl T; Kaneko H; Dauner K; Vocke K; Frings S; Möhrlen F
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6052-7. PubMed ID: 20231443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ins and outs of intracellular chloride in olfactory receptor neurons.
    Restrepo D
    Neuron; 2005 Feb; 45(4):481-2. PubMed ID: 15721233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ.
    Reuter D; Zierold K; Schröder WH; Frings S
    J Neurosci; 1998 Sep; 18(17):6623-30. PubMed ID: 9712634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ.
    Hegg CC; Lucero MT
    J Neurophysiol; 2004 Apr; 91(4):1492-9. PubMed ID: 14657189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures.
    Kahle KT; Staley KJ
    Neurosurg Focus; 2008 Sep; 25(3):E22. PubMed ID: 18759624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential contribution of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons.
    Chabwine JN; Talavera K; Verbert L; Eggermont J; Vanderwinden JM; De Smedt H; Van Den Bosch L; Robberecht W; Callewaert G
    FASEB J; 2009 Apr; 23(4):1168-76. PubMed ID: 19103648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Li RC; Lin CC; Ren X; Wu JS; Molday LL; Molday RS; Yau KW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5570-5575. PubMed ID: 29735665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired cardiac contractility in mice lacking both the AE3 Cl-/HCO3- exchanger and the NKCC1 Na+-K+-2Cl- cotransporter: effects on Ca2+ handling and protein phosphatases.
    Prasad V; Bodi I; Meyer JW; Wang Y; Ashraf M; Engle SJ; Doetschman T; Sisco K; Nieman ML; Miller ML; Lorenz JN; Shull GE
    J Biol Chem; 2008 Nov; 283(46):31303-14. PubMed ID: 18779325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus kinase 2 (JAK2) regulates prolactin-mediated chloride transport in mouse mammary epithelial cells through tyrosine phosphorylation of Na+-K+-2Cl- cotransporter.
    Selvaraj NG; Omi E; Gibori G; Rao MC
    Mol Endocrinol; 2000 Dec; 14(12):2054-65. PubMed ID: 11117534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-K+-2Cl- cotransporters and Cl- channels regulate citric acid cough in guinea pigs.
    Mazzone SB; McGovern AE
    J Appl Physiol (1985); 2006 Aug; 101(2):635-43. PubMed ID: 16627683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarization in the moth Spodoptera littoralis.
    Pézier A; Grauso M; Acquistapace A; Monsempes C; Rospars JP; Lucas P
    J Neurosci; 2010 May; 30(18):6323-33. PubMed ID: 20445058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.