These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16319203)

  • 41. Calcium-activated chloride conductance in frog olfactory cilia.
    Kleene SJ; Gesteland RC
    J Neurosci; 1991 Nov; 11(11):3624-9. PubMed ID: 1941099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation.
    Ma M; Chen WR; Shepherd GM
    J Neurosci Methods; 1999 Oct; 92(1-2):31-40. PubMed ID: 10595701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein aggregation in neurons following OGD: a role for Na+ and Ca2+ ionic dysregulation.
    Chen X; Kintner DB; Baba A; Matsuda T; Shull GE; Sun D
    J Neurochem; 2010 Jan; 112(1):173-82. PubMed ID: 19840218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of the Na-K-2Cl-cotransporter NKCC1 during mouse development.
    Hübner CA; Lorke DE; Hermans-Borgmeyer I
    Mech Dev; 2001 Apr; 102(1-2):267-9. PubMed ID: 11287208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Basal conductance of frog olfactory cilia.
    Kleene SJ
    Pflugers Arch; 1992 Jul; 421(4):374-80. PubMed ID: 1408661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Initial Characterization of a Subpopulation of Inherent Oscillatory Mammalian Olfactory Receptor Neurons.
    Ukhanov K; Bobkov YV; Martens JR; Ache BW
    Chem Senses; 2019 Oct; 44(8):583-592. PubMed ID: 31420672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An estimate of the resting membrane resistance of frog olfactory receptor neurones.
    Pun RY; Kleene SJ
    J Physiol; 2004 Sep; 559(Pt 2):535-42. PubMed ID: 15272040
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell suspensions from porcine olfactory mucosa. Changes in membrane potential and membrane fluidity in response to various odorants.
    Kashiwayanagi M; Sai K; Kurihara K
    J Gen Physiol; 1987 Mar; 89(3):443-57. PubMed ID: 3559517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ca
    Reisert J; Reingruber J
    Proc Natl Acad Sci U S A; 2019 Jan; 116(3):1053-1058. PubMed ID: 30598447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anion permeability of the olfactory receptive membrane.
    Takagi SF; Wyse GA; Yajima T
    J Gen Physiol; 1966 Nov; 50(2):473-89. PubMed ID: 11526841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple method for focally delivering multiple drugs or ligands to cells.
    Doolin RE; Ache BW
    J Neurosci Methods; 2002 Apr; 116(1):9-14. PubMed ID: 12007979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recording the slow potentials evoked by odors in the olfactory mucosa of awake animals.
    Chaput MA; Chalansonnet M
    J Neurosci Methods; 1997 Aug; 75(2):193-8. PubMed ID: 9288652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Paradoxical electro-olfactogram responses in TMEM16B knock-out mice.
    Guarneri G; Pifferi S; Dibattista M; Reisert J; Menini A
    Chem Senses; 2023 Jan; 48():. PubMed ID: 36744918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cyclic AMP signaling pathway in the rodent main olfactory system.
    Boccaccio A; Menini A; Pifferi S
    Cell Tissue Res; 2021 Jan; 383(1):429-443. PubMed ID: 33447881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tracking of unfamiliar odors is facilitated by signal amplification through anoctamin 2 chloride channels in mouse olfactory receptor neurons.
    Neureither F; Stowasser N; Frings S; Möhrlen F
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28784854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential.
    Glykys J; Dzhala V; Egawa K; Kahle KT; Delpire E; Staley K
    Trends Neurosci; 2017 May; 40(5):276-294. PubMed ID: 28431741
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Ca2+-activated Cl- channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons.
    Pietra G; Dibattista M; Menini A; Reisert J; Boccaccio A
    J Gen Physiol; 2016 Oct; 148(4):293-311. PubMed ID: 27619419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine.
    Bradford EM; Vairamani K; Shull GE
    World J Gastrointest Pathophysiol; 2016 Feb; 7(1):138-49. PubMed ID: 26909237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diazepam effect during early neonatal development correlates with neuronal Cl(.).
    Glykys J; Staley KJ
    Ann Clin Transl Neurol; 2015 Dec; 2(12):1055-70. PubMed ID: 26734658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons.
    Haering C; Kanageswaran N; Bouvain P; Scholz P; Altmüller J; Becker C; Gisselmann G; Wäring-Bischof J; Hatt H
    J Biol Chem; 2015 Apr; 290(15):9767-79. PubMed ID: 25713142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.