These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 16319207)

  • 41. Comparison between offset and onset responses of primary auditory cortex ON-OFF neurons in awake cats.
    Qin L; Chimoto S; Sakai M; Wang J; Sato Y
    J Neurophysiol; 2007 May; 97(5):3421-31. PubMed ID: 17360820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels.
    Kaczmarek LK; Bhattacharjee A; Desai R; Gan L; Song P; von Hehn CA; Whim MD; Yang B
    Hear Res; 2005 Aug; 206(1-2):133-45. PubMed ID: 16081004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spontaneous bursting and rhythmic activity in the cuneate nucleus of anaesthetized rats.
    Sánchez E; Reboreda A; Romero M; Lamas JA
    Neuroscience; 2006 Aug; 141(1):487-500. PubMed ID: 16675133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Study of the response of caudate nucleus neurons to direct electric stimulation of the medial geniculate body in the cat].
    Lukhanina EP; Cherkes VA; Litvinova AN
    Neirofiziologiia; 1983; 15(3):258-64. PubMed ID: 6308482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neural Eng; 2009 Dec; 6(6):065003. PubMed ID: 19850978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sustained firing in auditory cortex evoked by preferred stimuli.
    Wang X; Lu T; Snider RK; Liang L
    Nature; 2005 May; 435(7040):341-6. PubMed ID: 15902257
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex.
    Nakamoto KT; Zhang J; Kitzes LM
    J Neurophysiol; 2006 Mar; 95(3):1897-907. PubMed ID: 16339004
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts.
    Zhang H; Kelly JB
    J Neurophysiol; 2006 Apr; 95(4):2501-12. PubMed ID: 16394068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain.
    Galazyuk AV; Lin W; Llano D; Feng AS
    J Neurophysiol; 2005 Jul; 94(1):314-26. PubMed ID: 15772243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2007 Feb; 1133(1):78-86. PubMed ID: 17196561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The medial nucleus of the trapezoid body: comparative physiology.
    Kopp-Scheinpflug C; Tolnai S; Malmierca MS; Rübsamen R
    Neuroscience; 2008 Jun; 154(1):160-70. PubMed ID: 18436383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex.
    Zhang J; Nakamoto KT; Kitzes LM
    J Neurophysiol; 2005 Oct; 94(4):2263-74. PubMed ID: 15917317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence.
    Felix LB; Moraes JE; Miranda de Sá AM; Yehia HC; Moraes MF
    J Neurosci Methods; 2005 Jun; 144(2):249-55. PubMed ID: 15910985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CNTFRalpha and CNTF expressions in the auditory brainstem: light and electron microscopy study.
    Hafidi A; Decourt B; MacLennan AJ
    Hear Res; 2004 Aug; 194(1-2):14-24. PubMed ID: 15276672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The brain stem evoked response and medial nucleus of the trapezoid body.
    Tsuchitani C
    Otolaryngol Head Neck Surg; 1994 Jan; 110(1):84-92. PubMed ID: 8290306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reprint of "frequency tuning and firing pattern properties of auditory thalamic neurons: an in vivo intracellular recording from the guinea pig" [Neuroscience 151 (2008) 293-302].
    Zhang Z; Yu YQ; Liu CH; Chan YS; He J
    Neuroscience; 2008 Jun; 154(1):273-82. PubMed ID: 18555163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro.
    Wu SH; Kelly JB
    J Neurophysiol; 1991 Feb; 65(2):230-46. PubMed ID: 2016640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Responses of neurons of the supraolivary complex to amplitude-modulated signals].
    Andreeva NG; Vasil'ev AG
    Fiziol Zh SSSR Im I M Sechenova; 1977 Apr; 63(4):469-503. PubMed ID: 881038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal characteristics of tactile stimuli influence the response profile of cerebellar Golgi cells.
    Tahon K; Volny-Luraghi A; De Schutter E
    Neurosci Lett; 2005 Dec; 390(3):156-61. PubMed ID: 16162393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of sleep on the responses of single cells in the lateral superior olive.
    Pedemonte M; Peña JL; Morales-Cobas G; Velluti RA
    Arch Ital Biol; 1994 Jul; 132(3):165-78. PubMed ID: 7979862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.