BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 16319209)

  • 1. Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course and magnitude of illusory translation perception during off-vertical axis rotation.
    Vingerhoets RA; Medendorp WP; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1571-87. PubMed ID: 16319215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation.
    Merfeld DM; Park S; Gianna-Poulin C; Black FO; Wood S
    J Neurophysiol; 2005 Jul; 94(1):199-205. PubMed ID: 15730979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during Translation and Tilt.
    Merfeld DM; Park S; Gianna-Poulin C; Black FO; Wood S
    J Neurophysiol; 2005 Jul; 94(1):186-98. PubMed ID: 15728767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic effects on the subjective visual vertical after roll rotation.
    Lorincz EN; Hess BJ
    J Neurophysiol; 2008 Aug; 100(2):657-69. PubMed ID: 18497358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body-tilt and visual verticality perception during multiple cycles of roll rotation.
    Vingerhoets RA; Medendorp WP; Van Gisbergen JA
    J Neurophysiol; 2008 May; 99(5):2264-80. PubMed ID: 18337369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli.
    Zupan LH; Merfeld DM
    J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of body orientation and rotation axis on pitch visual-vestibular interaction.
    Clément G; Wood SJ; Lathan CE; Peterka RJ; Reschke MF
    J Vestib Res; 1999; 9(1):1-11. PubMed ID: 10334011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual field influence on manual roll and pitch stabilization.
    Huang JK; Young LR
    Aviat Space Environ Med; 1988 Jul; 59(7):611-9. PubMed ID: 3261580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative neural network for detecting inertial motion and head orientation.
    Green AM; Angelaki DE
    J Neurophysiol; 2004 Aug; 92(2):905-25. PubMed ID: 15056677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in rat horizontal vestibulo-ocular reflex phase as a function of orientation in gravity.
    Quinn KJ; Rude SA; Brettler SC; Baker JF
    J Gravit Physiol; 1998 Oct; 5(2):41-9. PubMed ID: 11541901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the otoliths to the human torsional vestibulo-ocular reflex.
    Groen E; Bos JE; de Graaf B
    J Vestib Res; 1999; 9(1):27-36. PubMed ID: 10334014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular convergence patterns in vestibular nuclei neurons of alert primates.
    Dickman JD; Angelaki DE
    J Neurophysiol; 2002 Dec; 88(6):3518-33. PubMed ID: 12466465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aging on the otolith-ocular reflex.
    Furman JM; Redfern MS
    J Vestib Res; 2001; 11(2):91-103. PubMed ID: 11847453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye movements during multi-axis whole-body rotations.
    Bockisch CJ; Straumann D; Haslwanter T
    J Neurophysiol; 2003 Jan; 89(1):355-66. PubMed ID: 12522185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical considerations on canal-otolith interactions during OVAR and Bayesian modelling.
    Laurens J; Hess BJ; Straumann D
    Prog Brain Res; 2008; 171():287-90. PubMed ID: 18718315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Egocentric and allocentric alignment tasks are affected by otolith input.
    Tarnutzer AA; Bockisch CJ; Olasagasti I; Straumann D
    J Neurophysiol; 2012 Jun; 107(11):3095-106. PubMed ID: 22442575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human 3-D aVOR with and without otolith stimulation.
    Bockisch CJ; Straumann D; Haslwanter T
    Exp Brain Res; 2005 Mar; 161(3):358-67. PubMed ID: 15490132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Otolith and canal reflexes in human standing.
    Cathers I; Day BL; Fitzpatrick RC
    J Physiol; 2005 Feb; 563(Pt 1):229-34. PubMed ID: 15618274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.