BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1631954)

  • 1. Temporal regulation in the early embryo: is MBT too good to be true?
    Yasuda GK; Schubiger G
    Trends Genet; 1992 Apr; 8(4):124-7. PubMed ID: 1631954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle gene activation in Xenopus requires intercellular communication during gastrula as well as blastula stages.
    Gurdon JB; Kao K; Kato K; Hopwood ND
    Dev Suppl; 1992; ():137-42. PubMed ID: 1299358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos.
    Ueno S; Kono R; Iwao Y
    Dev Biol; 2006 Sep; 297(1):274-83. PubMed ID: 16919259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the mid-blastula transition in amphibians.
    Etkin LD
    Dev Biol (N Y 1985); 1988; 5():209-25. PubMed ID: 3077975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
    Zoltewicz JS; Gerhart JC
    Dev Biol; 1997 Dec; 192(2):482-91. PubMed ID: 9441683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal patterns of cell division during early Xenopus embryogenesis.
    Saka Y; Smith JC
    Dev Biol; 2001 Jan; 229(2):307-18. PubMed ID: 11150237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition.
    Farrell JA; O'Farrell PH
    Annu Rev Genet; 2014; 48():269-94. PubMed ID: 25195504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axis determination in Xenopus: gradients and signals.
    Dawid IB; Taira M
    Bioessays; 1994 Jun; 16(6):385-6. PubMed ID: 7915901
    [No Abstract]   [Full Text] [Related]  

  • 9. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View.
    Yuan K; Seller CA; Shermoen AW; O'Farrell PH
    Trends Genet; 2016 Aug; 32(8):496-507. PubMed ID: 27339317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal transduction during mesoderm induction in Xenopus.
    Whitman M; Melton DA
    J Reprod Fertil Suppl; 1990; 42():249-54. PubMed ID: 2077128
    [No Abstract]   [Full Text] [Related]  

  • 11. Cell recognition processes in the differentiation of embryonic sea urchins.
    Fink RD; McClay DR
    Prog Clin Biol Res; 1984; 157():143-8. PubMed ID: 6483874
    [No Abstract]   [Full Text] [Related]  

  • 12. Heparitinase inhibition of mesoderm induction and gastrulation in Xenopus laevis embryos.
    Brickman MC; Gerhart JC
    Dev Biol; 1994 Aug; 164(2):484-501. PubMed ID: 7519155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus.
    Egaña AL; Ernst SG
    Dev Dyn; 2004 Oct; 231(2):370-8. PubMed ID: 15366014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo.
    Shibata K; Ishimura A; Maéno M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):241-8. PubMed ID: 9813177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upstream elements involved in the embryonic regulation of the sea urchin CyIIIb actin gene: temporal and spatial specific interactions at a single cis-acting element.
    Niemeyer CC; Flytzanis CN
    Dev Biol; 1993 Mar; 156(1):293-302. PubMed ID: 8449372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.
    Kingsley PD; Angerer LM; Angerer RC
    Dev Biol; 1993 Jan; 155(1):216-34. PubMed ID: 8416835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic linker histones cause loss of mesodermal competence in Xenopus.
    Steinbach OC; Wolffe AP; Rupp RA
    Nature; 1997 Sep; 389(6649):395-9. PubMed ID: 9311783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of the organizing activity of the lower endodermal half of the dorsal marginal zone is a primary and necessary event for dorsal axis formation in Cynops pyrrhogaster.
    Sakaguchi K; Kaneda T; Matsumoto M; Imoh H; Suzuki AS
    Int J Dev Biol; 2002 Sep; 46(6):793-800. PubMed ID: 12382945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo.
    Schmidt JE; Suzuki A; Ueno N; Kimelman D
    Dev Biol; 1995 May; 169(1):37-50. PubMed ID: 7750652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.