These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. fMRI-acoustic noise alters brain activation during working memory tasks. Tomasi D; Caparelli EC; Chang L; Ernst T Neuroimage; 2005 Aug; 27(2):377-86. PubMed ID: 15893942 [TBL] [Abstract][Full Text] [Related]
4. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks. Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324 [TBL] [Abstract][Full Text] [Related]
5. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522 [TBL] [Abstract][Full Text] [Related]
7. Neural substrates associated with the concurrent performance of dual working memory tasks. Yoo SS; Paralkar G; Panych LP Int J Neurosci; 2004 Jun; 114(6):613-31. PubMed ID: 15204056 [TBL] [Abstract][Full Text] [Related]
8. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI. Churchill NW; Yourganov G; Spring R; Rasmussen PM; Lee W; Ween JE; Strother SC Neuroimage; 2012 Jan; 59(2):1299-314. PubMed ID: 21871573 [TBL] [Abstract][Full Text] [Related]
9. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA). Justen C; Herbert C; Werner K; Raab M Neuroscience; 2014 Feb; 259():25-34. PubMed ID: 24295635 [TBL] [Abstract][Full Text] [Related]
11. Males and females differ in brain activation during cognitive tasks. Bell EC; Willson MC; Wilman AH; Dave S; Silverstone PH Neuroimage; 2006 Apr; 30(2):529-38. PubMed ID: 16260156 [TBL] [Abstract][Full Text] [Related]
12. Looping Star fMRI in Cognitive Tasks and Resting State. Dionisio-Parra B; Wiesinger F; Sämann PG; Czisch M; Solana AB J Magn Reson Imaging; 2020 Sep; 52(3):739-751. PubMed ID: 32073206 [TBL] [Abstract][Full Text] [Related]
13. Investigating the benefits of multi-echo EPI for fMRI at 7 T. Poser BA; Norris DG Neuroimage; 2009 May; 45(4):1162-72. PubMed ID: 19349231 [TBL] [Abstract][Full Text] [Related]
14. The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI. Sangill R; Wallentin M; Østergaard L; Vestergaard-Poulsen P MAGMA; 2006 Aug; 19(3):105-14. PubMed ID: 16823579 [TBL] [Abstract][Full Text] [Related]
15. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps. Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463 [TBL] [Abstract][Full Text] [Related]
16. Scanning for the scanner: FMRI of audition by read-out omissions from echo-planar imaging. Bartsch AJ; Homola G; Thesen S; Sahmer P; Keim R; Beckmann CF; Biller A; Knaus C; Bendszus M Neuroimage; 2007 Mar; 35(1):234-43. PubMed ID: 17188900 [TBL] [Abstract][Full Text] [Related]
17. BOLD signal in memory paradigms in hippocampal region depends on echo time. Milian M; Zeltner L; Klamer S; Klose U; Rona S; Erb M J Magn Reson Imaging; 2013 May; 37(5):1064-71. PubMed ID: 23124612 [TBL] [Abstract][Full Text] [Related]
18. Technical considerations for functional magnetic resonance imaging analysis. Conklin CJ; Faro SH; Mohamed FB Neuroimaging Clin N Am; 2014 Nov; 24(4):695-704. PubMed ID: 25441508 [TBL] [Abstract][Full Text] [Related]
19. Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of FMRI. Deshpande G; Sathian K; Hu X IEEE Trans Biomed Eng; 2010 Jun; 57(6):1446-56. PubMed ID: 20659822 [TBL] [Abstract][Full Text] [Related]