These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 16320304)

  • 1. PET imaging of glucose metabolism in a mouse model of temporal lobe epilepsy.
    Mirrione MM; Schiffer WK; Siddiq M; Dewey SL; Tsirka SE
    Synapse; 2006 Feb; 59(2):119-21. PubMed ID: 16320304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial and subsequent approach for the synthesis of 18FDG.
    Fowler JS; Ido T
    Semin Nucl Med; 2002 Jan; 32(1):6-12. PubMed ID: 11839070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice.
    Müller CJ; Gröticke I; Bankstahl M; Löscher W
    Exp Neurol; 2009 Sep; 219(1):284-97. PubMed ID: 19500573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The added value of [18F]-fluoro-D-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery.
    Uijl SG; Leijten FS; Arends JB; Parra J; van Huffelen AC; Moons KG
    Epilepsia; 2007 Nov; 48(11):2121-9. PubMed ID: 17651417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of positron emission tomography in sarcomas.
    Schuetze SM
    Curr Opin Oncol; 2006 Jul; 18(4):369-73. PubMed ID: 16721133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study.
    Guo Y; Gao F; Wang S; Ding Y; Zhang H; Wang J; Ding MP
    Neuroscience; 2009 Sep; 162(4):972-9. PubMed ID: 19477240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia: a high resolution positron emission tomography study.
    Lou M; Zhang H; Wang J; Wen SQ; Tang ZQ; Chen YZ; Yan WQ; Ding MP
    Neuroscience; 2007 May; 146(2):555-61. PubMed ID: 17367940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: Toward identification of optimal treatment windows.
    Nguyen DL; Wimberley C; Truillet C; Jego B; Caillé F; Pottier G; Boisgard R; Buvat I; Bouilleret V
    Epilepsia; 2018 Jun; 59(6):1234-1244. PubMed ID: 29672844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric seizure termination in primary and secondary generalized tonic-clonic seizures.
    Walser G; Unterberger I; Dobesberger J; Embacher N; Falkenstetter T; Larch J; Kuchukhidze G; Gotwald T; Ortler M; Bauer G; Trinka E
    Epilepsia; 2009 Sep; 50(9):2035-9. PubMed ID: 19400875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in central 5-HT(1A) receptor binding in mesial temporal epilepsy measured by positron emission tomography with [(11)C]WAY100635.
    Ito S; Suhara T; Ito H; Yasuno F; Ichimiya T; Takano A; Maehara T; Matsuura M; Okubo Y
    Epilepsy Res; 2007 Jan; 73(1):111-8. PubMed ID: 17097271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of animal handling on the results of 18F-FDG PET studies in mice.
    Fueger BJ; Czernin J; Hildebrandt I; Tran C; Halpern BS; Stout D; Phelps ME; Weber WA
    J Nucl Med; 2006 Jun; 47(6):999-1006. PubMed ID: 16741310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy.
    Rigau V; Morin M; Rousset MC; de Bock F; Lebrun A; Coubes P; Picot MC; Baldy-Moulinier M; Bockaert J; Crespel A; Lerner-Natoli M
    Brain; 2007 Jul; 130(Pt 7):1942-56. PubMed ID: 17533168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy.
    Goffin K; Van Paesschen W; Dupont P; Van Laere K
    Exp Neurol; 2009 May; 217(1):205-9. PubMed ID: 19236862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of hyperaccumulation of [18F]2-fluoro-2-deoxy-D-glucose under oxygen deprivation in living brain slices using bioradiography.
    Sasaki T; Yamaguchi M; Kojima S
    Synapse; 2005 Mar; 55(4):252-61. PubMed ID: 15668912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of carbamazepine on cerebral glucose metabolism.
    Theodore WH; Bromfield E; Onorati L
    Ann Neurol; 1989 May; 25(5):516-20. PubMed ID: 2774494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy.
    Zhang L; Guo Y; Hu H; Wang J; Liu Z; Gao F
    Int J Med Sci; 2015; 12(3):288-94. PubMed ID: 25798055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PET imaging study of the brain changes of glucose metabolism in patients with temporal lobe epilepsy and depressive disorder.
    Wen JF; Guo XW; Cao XY; Liao JW; Ma P; Hu XS; Pan JY
    BMC Med Imaging; 2021 Feb; 21(1):33. PubMed ID: 33618703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental enrichment reduces spontaneous seizures in the Q54 transgenic mouse model of temporal lobe epilepsy.
    Manno I; Macchi F; Caleo M; Bozzi Y
    Epilepsia; 2011 Sep; 52(9):e113-7. PubMed ID: 21762452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroPET imaging in an animal model of anorexia nervosa.
    Barbarich-Marsteller NC; Marsteller DA; Alexoff DL; Fowler JS; Dewey SL
    Synapse; 2005 Aug; 57(2):85-90. PubMed ID: 15906391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vivo imaging with small animal FDG-PET: a tool to unlock the secrets of epileptogenesis?
    O'Brien TJ; Jupp B
    Exp Neurol; 2009 Nov; 220(1):1-4. PubMed ID: 19646437
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.