BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 16320312)

  • 1. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DSDBASE: a consortium of native and modelled disulphide bonds in proteins.
    Vinayagam A; Pugalenthi G; Rajesh R; Sowdhamini R
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D200-2. PubMed ID: 14681394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue.
    Neves-Petersen MT; Gryczynski Z; Lakowicz J; Fojan P; Pedersen S; Petersen E; Bjørn Petersen S
    Protein Sci; 2002 Mar; 11(3):588-600. PubMed ID: 11847281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPT-DB: the protein property prediction and testing database.
    Wishart DS; Arndt D; Berjanskii M; Guo AC; Shi Y; Shrivastava S; Zhou J; Zhou Y; Lin G
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D222-9. PubMed ID: 17916570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server.
    Ceroni A; Passerini A; Vullo A; Frasconi P
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W177-81. PubMed ID: 16844986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions.
    Schöpf J; Uhrig S; Heilig CE; Lee KS; Walther T; Carazzato A; Dobberkau AM; Weichenhan D; Plass C; Hartmann M; Diwan GD; Carrero ZI; Ball CR; Hohl T; Kindler T; Rudolph-Hähnel P; Helm D; Schneider M; Nilsson A; Øra I; Imle R; Banito A; Russell RB; Jones BC; Lipka DB; Glimm H; Hübschmann D; Hartmann W; Fröhling S; Scholl C
    Nat Commun; 2024 Jan; 15(1):51. PubMed ID: 38168093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Cloning and Characterization of a
    Martviset P; Chantree P; Chaimon S; Torungkitmangmi N; Prathaphan P; Ruangtong J; Sornchuer P; Thongsepee N; Sangpairoj K; Adisakwattana P
    Pathogens; 2022 Dec; 11(12):. PubMed ID: 36558792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPVED: A machine learning tool for predicting the effect of single amino acid substitution on protein function in plants.
    Gou X; Feng X; Shi H; Guo T; Xie R; Liu Y; Wang Q; Li H; Yang B; Chen L; Lu Y
    Plant Biotechnol J; 2022 Jul; 20(7):1417-1431. PubMed ID: 35398963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Sensitive VDAC: A Possible Function as an Environmental Stress Sensor Revealed by Bioinformatic Analysis.
    Karachitos A; Grabiński W; Baranek M; Kmita H
    Front Physiol; 2021; 12():750627. PubMed ID: 34966287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and in-depth bioinformatics analysis of type II ribosome-inactivating protein isolated from
    Rezaei-Moshaei M; Bandehagh A; Dehestani A; Pakdin-Parizi A; Golkar M
    Saudi J Biol Sci; 2020 Jun; 27(6):1609-1623. PubMed ID: 32489302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural introspection of a putative fluoride transporter in plants.
    Banerjee A; Roychoudhury A
    3 Biotech; 2019 Mar; 9(3):103. PubMed ID: 30800614
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Sajjadi SM; Rahimi H; Mohammadi S; Faranoush M; Mirzahoseini H; Toogeh G
    Res Pharm Sci; 2017 Feb; 12(1):60-66. PubMed ID: 28255315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for disulfide bonds in SR Protein Kinase 1 (SRPK1) that are required for activity and nuclear localization.
    Koutroumani M; Papadopoulos GE; Vlassi M; Nikolakaki E; Giannakouros T
    PLoS One; 2017; 12(2):e0171328. PubMed ID: 28166275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes.
    Kurotani A; Yamada Y; Sakurai T
    Plant Cell Physiol; 2017 Jan; 58(1):e6. PubMed ID: 28069893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.
    Jung W; Campbell RL; Gwak Y; Kim JI; Davies PL; Jin E
    PLoS One; 2016; 11(4):e0154056. PubMed ID: 27097164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Computing Methods for Disulfide Connectivity Prediction.
    Márquez-Chamorro AE; Aguilar-Ruiz JS
    Evol Bioinform Online; 2015; 11():223-9. PubMed ID: 26523116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function.
    Sharma P; Abbasi C; Lazic S; Teng ACT; Wang D; Dubois N; Ignatchenko V; Wong V; Liu J; Araki T; Tiburcy M; Ackerley C; Zimmermann WH; Hamilton R; Sun Y; Liu PP; Keller G; Stagljar I; Scott IC; Kislinger T; Gramolini AO
    Nat Commun; 2015 Sep; 6():8391. PubMed ID: 26403541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
    Yang J; He BJ; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2015 Dec; 31(23):3773-81. PubMed ID: 26254435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoagVDb: a comprehensive database for coagulation factors and their associated SAPs.
    Ali SK; Doss CG; Kumar DT; Zhu H
    Biol Res; 2015 Jul; 48(1):35. PubMed ID: 26187044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Evolutionary View on Disulfide Bond Connectivities Prediction Using Phylogenetic Trees and a Simple Cysteine Mutation Model.
    Raimondi D; Orlando G; Vranken WF
    PLoS One; 2015; 10(7):e0131792. PubMed ID: 26161671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.