BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16321013)

  • 1. A general solid phase method for the preparation of diverse azapeptide probes directed against cysteine proteases.
    Kato D; Verhelst SH; Sexton KB; Bogyo M
    Org Lett; 2005 Dec; 7(25):5649-52. PubMed ID: 16321013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases.
    Verhelst SH; Witte MD; Arastu-Kapur S; Fonovic M; Bogyo M
    Chembiochem; 2006 Jun; 7(6):943-50. PubMed ID: 16607671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of aza-peptide electrophile activity-based probes of caspases.
    Sexton KB; Kato D; Berger AB; Fonovic M; Verhelst SH; Bogyo M
    Cell Death Differ; 2007 Apr; 14(4):727-32. PubMed ID: 17170749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases.
    Wang G; Mahesh U; Chen GY; Yao SQ
    Org Lett; 2003 Mar; 5(5):737-40. PubMed ID: 12605503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-based probes that target diverse cysteine protease families.
    Kato D; Boatright KM; Berger AB; Nazif T; Blum G; Ryan C; Chehade KA; Salvesen GS; Bogyo M
    Nat Chem Biol; 2005 Jun; 1(1):33-8. PubMed ID: 16407991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-phase synthesis of azidomethylene inhibitors targeting cysteine proteases.
    Yang PY; Wu H; Lee MY; Xu A; Srinivasan R; Yao SQ
    Org Lett; 2008 May; 10(10):1881-4. PubMed ID: 18407644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine protease inhibition by azapeptide esters.
    Magrath J; Abeles RH
    J Med Chem; 1992 Nov; 35(23):4279-83. PubMed ID: 1447732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-based fingerprinting and inhibitor discovery of cysteine proteases in a microarray.
    Uttamchandani M; Liu K; Panicker RC; Yao SQ
    Chem Commun (Camb); 2007 Apr; (15):1518-20. PubMed ID: 17406693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases.
    Löser R; Frizler M; Schilling K; Gütschow M
    Angew Chem Int Ed Engl; 2008; 47(23):4331-4. PubMed ID: 18404765
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel azapeptide inhibitors of hepatitis C virus serine protease.
    Bailey MD; Halmos T; Goudreau N; Lescop E; Llinàs-Brunet M
    J Med Chem; 2004 Jul; 47(15):3788-99. PubMed ID: 15239657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase methods for the preparation of epoxysuccinate-based inhibitors of cysteine proteases.
    Sadaghiani AM; Verhelst SH; Bogyo M
    J Comb Chem; 2006; 8(6):802-4. PubMed ID: 17096566
    [No Abstract]   [Full Text] [Related]  

  • 12. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases.
    Ekici OD; Götz MG; James KE; Li ZZ; Rukamp BJ; Asgian JL; Caffrey CR; Hansell E; Dvorák J; McKerrow JH; Potempa J; Travis J; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2004 Apr; 47(8):1889-92. PubMed ID: 15055989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Click" synthesis of small molecule-peptide conjugates for organelle-specific delivery and inhibition of lysosomal cysteine proteases.
    Loh Y; Shi H; Hu M; Yao SQ
    Chem Commun (Camb); 2010 Nov; 46(44):8407-9. PubMed ID: 20931108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New m-calpain substrate-based azapeptide inhibitors.
    Bánóczi Z; Tantos Á; Farkas A; Majer Z; Dókus LE; Tompa P; Hudecz F
    J Pept Sci; 2013 Jun; 19(6):370-6. PubMed ID: 23613308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent tripeptidyl benzyl- and cyclohexyl-amine inhibitors of the cysteine protease caspase-1.
    Löser R; Abbenante G; Madala PK; Halili M; Le GT; Fairlie DP
    J Med Chem; 2010 Mar; 53(6):2651-5. PubMed ID: 20170165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of the first all-aza analogue of a biologically active peptide.
    Gante J; Krug M; Lauterbach G; Weitzel R; Hiller W
    J Pept Sci; 1995; 1(3):201-6. PubMed ID: 9222997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-supported approach for solution-phase synthesis of cysteine trap protease inhibitors: procedure for straightforward optimization of the P1-P1' pocket.
    Yadav-Bhatnagar N; Desjonquères N; Mauger J
    J Comb Chem; 2002; 4(1):49-55. PubMed ID: 11831882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for Biomedical Applications.
    Chingle R; Proulx C; Lubell WD
    Acc Chem Res; 2017 Jul; 50(7):1541-1556. PubMed ID: 28598597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azapeptides and their therapeutic potential.
    Proulx C; Sabatino D; Hopewell R; Spiegel J; García Ramos Y; Lubell WD
    Future Med Chem; 2011 Jul; 3(9):1139-64. PubMed ID: 21806378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Part 2: building diverse natural-product-like architectures from a tetrahydroaminoquinoline scaffold. Modular solution- and solid-phase approaches for use in high-throughput generation of chemical probes.
    Sharma U; Srivastava S; Prakesch M; Sharma M; Leek DM; Arya P
    J Comb Chem; 2006; 8(5):735-61. PubMed ID: 16961411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.