These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. George J; Ramana KV; Bawa AS; Siddaramaiah Int J Biol Macromol; 2011 Jan; 48(1):50-7. PubMed ID: 20920524 [TBL] [Abstract][Full Text] [Related]
5. [Influence of culture mode on bacterial cellulose production and its structure and property]. Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273 [TBL] [Abstract][Full Text] [Related]
6. Bacterial cellulose composites loaded with SiO Sheykhnazari S; Tabarsa T; Ashori A; Ghanbari A Int J Biol Macromol; 2016 Dec; 93(Pt A):672-677. PubMed ID: 27637448 [TBL] [Abstract][Full Text] [Related]
7. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum. Krystynowicz A; Koziołkiewicz M; Wiktorowska-Jezierska A; Bielecki S; Klemenska E; Masny A; Płucienniczak A Acta Biochim Pol; 2005; 52(3):691-8. PubMed ID: 16175243 [TBL] [Abstract][Full Text] [Related]
9. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Yoon SH; Jin HJ; Kook MC; Pyun YR Biomacromolecules; 2006 Apr; 7(4):1280-4. PubMed ID: 16602750 [TBL] [Abstract][Full Text] [Related]
10. Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Cheng KC; Catchmark JM; Demirci A Biomacromolecules; 2011 Mar; 12(3):730-6. PubMed ID: 21250667 [TBL] [Abstract][Full Text] [Related]
11. [Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode (author's transl)]. Diviés C Ann Microbiol (Paris); 1975; 126(2):175-86. PubMed ID: 239620 [TBL] [Abstract][Full Text] [Related]
12. Multilayer bacterial cellulose/resole nanocomposites: Relationship between structural and electro-thermo-mechanical properties. Sheykhnazari S; Tabarsa T; Mashkour M; Khazaeian A; Ghanbari A Int J Biol Macromol; 2018 Dec; 120(Pt B):2115-2122. PubMed ID: 30218738 [TBL] [Abstract][Full Text] [Related]
13. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Bhardwaj R; Mohanty AK; Drzal LT; Pourboghrat F; Misra M Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432 [TBL] [Abstract][Full Text] [Related]
14. Selected morphological and functional properties of extruded acetylated starch-cellulose foams. Guan J; Hanna MA Bioresour Technol; 2006 Sep; 97(14):1716-26. PubMed ID: 16769212 [TBL] [Abstract][Full Text] [Related]
15. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Bae SO; Shoda M Appl Microbiol Biotechnol; 2005 Apr; 67(1):45-51. PubMed ID: 15338079 [TBL] [Abstract][Full Text] [Related]
16. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Cai J; Zhang L Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514 [TBL] [Abstract][Full Text] [Related]
17. Spectral assignments and anisotropy data of cellulose I(alpha): 13C-NMR chemical shift data of cellulose I(alpha) determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Hesse-Ertelt S; Witter R; Ulrich AS; Kondo T; Heinze T Magn Reson Chem; 2008 Nov; 46(11):1030-6. PubMed ID: 18781703 [TBL] [Abstract][Full Text] [Related]
18. Glass transition and the origin of poly(p-phenylene sulfide) secondary crystallization. D'Ilario L; Martinelli A Eur Phys J E Soft Matter; 2006 Jan; 19(1):37-45. PubMed ID: 16416246 [TBL] [Abstract][Full Text] [Related]
19. Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology. Chávez-Pacheco JL; Martínez-Yee S; Contreras ML; Gómez-Manzo S; Membrillo-Hernández J; Escamilla JE J Appl Microbiol; 2005; 99(5):1130-40. PubMed ID: 16238743 [TBL] [Abstract][Full Text] [Related]
20. Differential scanning calorimetry (DSC) and temperature-modulated DSC study of three mouthguard materials. Meng FH; Schricker SR; Brantley WA; Mendel DA; Rashid RG; Fields HW; Vig KW; Alapati SB Dent Mater; 2007 Dec; 23(12):1492-9. PubMed ID: 17412412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]